A NORMALLY ELLIPTIC HAMILTONIAN BIFURCATION

被引:55
作者
BROER, HW
CHOW, SN
KIM, Y
VEGTER, G
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
[2] UNIV ULSAN,DEPT MATH,ULSAN 680749,SOUTH KOREA
[3] UNIV GRONINGEN,DEPT COMP SCI,9700 AV GRONINGEN,NETHERLANDS
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1993年 / 44卷 / 03期
关键词
D O I
10.1007/BF00953660
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A universal local bifurcation analysis is presented of an autonomous Hamiltonian system around a certain equilibrium point. This central equilibrium has a double zero eigenvalue, the other eigenvalues being in general position. Main emphasis is given to the 2 degrees of freedom case where these other eigenvalues are purely imaginary. By normal form techniques and Singularity Theory unfoldings are obtained. having 'integrable' approximations related to the Elliptic and Hyperbolic Umbilic Catastrophes.
引用
收藏
页码:389 / 432
页数:44
相关论文
共 50 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
Andronov A. A., 1971, THEORY BIFURCATIONS
[3]  
[Anonymous], 1979, CATASTROPHE THEORY I
[4]  
Arnold V. I., 1980, MATH METHODS CLASSIC, V2nd
[5]  
Arnold V. I., 1971, RUSS MATH SURV, V26
[6]  
ARNOLD VI, 1972, FUNCT ANAL APPL, V6
[7]  
Arnold VI., 1983, GEOMETRICAL METHODS
[8]  
Birkhoff G.D, 1927, DYNAM SYST
[9]  
BRAKSMA BLJ, 1992, ASTERISQUE, P98
[10]  
Brocker T., 1975, DIFFERENTIABLE GERMS, DOI DOI 10.1017/CBO9781107325418