ORIENTATION DEPENDENCE OF OPTICAL-PROPERTIES IN LONG-WAVELENGTH STRAINED-QUANTUM-WELL LASERS

被引:37
作者
NIWA, A
OHTOSHI, T
KURODA, T
机构
[1] Central Research Laboratory, Hitachi, Ltd., Kokubunji
关键词
D O I
10.1109/2944.401199
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dependence of optical properties on crystal orientation is analyzed for long wavelength strained quantum-well (QW) lasers. The calculation is based on the multiband effective mass theory which enables us to consider the anisotropy and the nonparabolicity of the valence-band dispersions, It is found that the optical gain increases as the crystal orientation crystallographic directions, taking into is inclined from (001) toward (110). This is due to the reduced valence-band density of states. The differential gain is about 1.6 times larger for the (110)-oriented 1.55-mu m strained QW's than for equivalent (001)-oriented QW's, It is also shown that threshold current density in 1.3-mu m strained QW lasers decreases to two-thirds of that in the (001)-oriented laser as the orientation is inclined away from (001) by 40 degrees-90 degrees.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 22 条
[1]  
Thijs P.J.A., Binsma J.J.M., Tiemeijer L.F., van Dongen T., Improved performance 1.5 μm wavelength tensile and compressively strained InGaAs–InGaAsP quantum-well lasers (invited), ECOC/IOOC, pp. 31-38, (1991)
[2]  
Osinski J.S., Grodzinski P., Zou Y., Dapkus P.D., Karim Z., Tanguay A.R., Low threshold current 1.5 μm buried heterostructure lasers using strained quaternary quantum-wells, IEEE Photon. Technol. Lett., 4, pp. 1313-1315, (1992)
[3]  
Yablonovitch E., Kane E.O., Band structure engineering of semiconductor lasers for optical communications, J. Lightwave Technol., 6, pp. 1292-1299, (1988)
[4]  
Batty W., Ekenberg U., Ghiti A., O'Reilly E.P., Valence subband structure and optical gain of GaAs–AlGaAs (111) quantum-wells, Semicond. Sci. Technol., 4, pp. 904-909, (1989)
[5]  
Takahashi T., Schulman J.N., Arakawa Y., Dependence of lasing characteristics of quantum-well lasers on substrate orientation: Tight-binding theory, Appl. Phys. Lett., 58, pp. 881-883, (1991)
[6]  
Xia J.-B., Effective-mass theory for superlattices grown on (11N)-oriented substrates, Phys. Rev., B43, pp. 9856-9864, (1991)
[7]  
Many A.T., Orientation dependence of subband structure and optical properties in GaAs–AlGaAs quantum-wells: [001], [111], [110] and [310] growth directions, Superlattices and Microstructures, 11, pp. 31-40, (1992)
[8]  
Hayakawa T., Suyama T., Takahashi K., Kondo M., Tamamoto S., Hijikata T., Near-ideal low threshold behavior in (111) oriented GaAs–AlGaAs quantum-well lasers, Appl. Phys. Lett., 52, pp. 339-341, (1988)
[9]  
Hayakawa T., Suyama T., Takahashi K., Kondo M., Tamamoto S., Hijikata T., Polarization-dependent gain-current relationship in (111)-oriented GaAs/AlGaAs quantum-well lasers, J. Appl. Phys., 64, pp. 297-302, (1988)
[10]  
Thijs P.J.A., Binsma J.J.M., Tiemeijer L.F., Slootweg R.W.M., van Roijen R., van Dongen T., Sub-mA threshold operation of λ = 1.5 μm strained InGaAs multiple quantum-well lasers grown on (311)B InP substrates, Appl. Phys. Lett., 60, pp. 3217-3219, (1992)