MULTIPLICATION RINGS VIA THEIR TOTAL QUOTIENT RINGS

被引:12
作者
GRIFFIN, M [1 ]
机构
[1] QUEENS UNIV,KINGSTON,ONTARIO,CANADA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1974年 / 26卷 / 02期
关键词
D O I
10.4153/CJM-1974-043-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:430 / 449
页数:20
相关论文
共 9 条
[1]   MULTIPLICATION RINGS AS RINGS IN WHICH IDEALS WITH PRIME RADICAL ARE PRIMARY [J].
GILMER, RW ;
MOTT, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (01) :40-&
[2]   ON A CLASSICAL THEOREM OF NOETHER IN IDEAL THEORY [J].
GILMER, RW .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (02) :579-&
[3]  
GRIFFIN M, 1974, CAN J MATH, V26, P412, DOI 10.4153/CJM-1974-042-1
[4]   PROJECTIVE MODULES [J].
KAPLANSKY, I .
ANNALS OF MATHEMATICS, 1958, 68 (02) :372-377
[5]  
Larsen M.D, 1971, Multiplicative Theory of Ideals
[6]  
MAROT J, 1969, CR ACAD SCI A MATH, V269, P58
[7]  
Mori S., 1934, J SCI HIROSHIMA U A, VA4, P1
[8]  
PIERCE RS, 1967, MEM AM MATH SOC
[9]   COMMUTATIVE RING EPIMORPHISMS [J].
STORRER, HH .
COMMENTARII MATHEMATICI HELVETICI, 1968, 43 (04) :378-&