MOLECULAR DEFECTS IN DIABETES-MELLITUS

被引:65
作者
BELL, GI
机构
[1] UNIV CHICAGO,DEPT BIOCHEM & MOLEC BIOL,CHICAGO,IL 60637
[2] UNIV CHICAGO,DEPT MED,CHICAGO,IL 60637
关键词
D O I
10.2337/diabetes.40.4.413
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The application of molecular biology to problems in diabetes mellitus has begun to reveal the underlying molecular defects contributing to the development of hyperglycermia. Islet amyloid represents the most common pathological lesion occurring in the islets of NIDDM subjects. The use of both biochemistry and molecular biology has lead to the identification of the major protein component of human islet amyloid and elucidation of the structure of its precursor. This protein, termed islet amyloid polypeptide, is related to two neuropeptides, calcitonin gene-related peptides 1 and 2, and represents a new beta-cell secretory product whose normal physiological function remains to be determined. The use of molecular biology has also led to a better understanding of the molecular defects contributing to insulin resistance. Characterization of the insulin-receptor gene in patients with extreme forms of insulin resistance has resulted in the identification of mutations that impair its function and lead to tissue resistance to the action of insulin. Molecular biological approaches have also led to a better understanding of the regulation of glucose transport. They have revealed that there is a family of structurally related proteins encoded by distinct genes and expressed in a tissue-specific manner that are responsible for the transport of glucose across the plasma membrane. Moreover, they have shown that specific depletion of the glucose-transporter isoform that mediates insulin-stimulated glucose transport is responsible for decreased transport activity in adipose tissue in insulin-resistant states.
引用
收藏
页码:413 / 422
页数:10
相关论文
共 87 条
[1]   A MUTATION IN THE INSULIN-RECEPTOR GENE THAT IMPAIRS TRANSPORT OF THE RECEPTOR TO THE PLASMA-MEMBRANE AND CAUSES INSULIN-RESISTANT DIABETES [J].
ACCILI, D ;
FRAPIER, C ;
MOSTHAF, L ;
MCKEON, C ;
ELBEIN, SC ;
PERMUTT, MA ;
RAMOS, E ;
LANDER, E ;
ULLRICH, A ;
TAYLOR, SI .
EMBO JOURNAL, 1989, 8 (09) :2509-2517
[2]   ISOLATION AND SEQUENCE DETERMINATION OF RAT ISLET AMYLOID POLYPEPTIDE [J].
ASAI, J ;
NAKAZATO, M ;
KANGAWA, K ;
MATSUKURA, S ;
MATSUO, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1989, 164 (01) :400-405
[3]   HYALINIZATION OF THE ISLETS OF LANGERHANS IN DIABETES MELLITUS [J].
BELL, ET .
DIABETES, 1952, 1 (05) :341-344
[4]   MOLECULAR-BIOLOGY OF MAMMALIAN GLUCOSE TRANSPORTERS [J].
BELL, GI ;
KAYANO, T ;
BUSE, JB ;
BURANT, CF ;
TAKEDA, J ;
LIN, D ;
FUKUMOTO, H ;
SEINO, S .
DIABETES CARE, 1990, 13 (03) :198-208
[5]   DECREASED EXPRESSION OF THE INSULIN-RESPONSIVE GLUCOSE TRANSPORTER IN DIABETES AND FASTING [J].
BERGER, J ;
BISWAS, C ;
VICARIO, PP ;
STROUT, HV ;
SAPERSTEIN, R ;
PILCH, PF .
NATURE, 1989, 340 (6228) :70-72
[6]   IDENTIFICATION OF A NOVEL GENE ENCODING AN INSULIN-RESPONSIVE GLUCOSE TRANSPORTER PROTEIN [J].
BIRNBAUM, MJ .
CELL, 1989, 57 (02) :305-315
[7]   EFFECTS OF ALTERED GLUCOSE-HOMEOSTASIS ON GLUCOSE TRANSPORTER EXPRESSION IN SKELETAL-MUSCLE OF THE RAT [J].
BOUREY, RE ;
KORANYI, L ;
JAMES, DE ;
MUECKLER, M ;
PERMUTT, MA .
JOURNAL OF CLINICAL INVESTIGATION, 1990, 86 (02) :542-547
[8]   A RECEPTOR-MEDIATED PATHWAY FOR CHOLESTEROL HOMEOSTASIS [J].
BROWN, MS ;
GOLDSTEIN, JL .
SCIENCE, 1986, 232 (4746) :34-47
[9]   A GLUCOSE-TRANSPORT PROTEIN EXPRESSED PREDOMINATELY IN INSULIN-RESPONSIVE TISSUES [J].
CHARRON, MJ ;
BROSIUS, FC ;
ALPER, SL ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2535-2539
[10]  
CHARRON MJ, 1990, J BIOL CHEM, V265, P7994