GEOMETRICAL ASPECTS OF STABILITY THEORY FOR HILLS EQUATIONS

被引:57
作者
BROER, H [1 ]
LEVI, M [1 ]
机构
[1] RENSSELAER POLYTECH INST,DEPT MATH SCI,TROY,NY 12180
关键词
D O I
10.1007/BF00382887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:225 / 240
页数:16
相关论文
共 11 条
[1]  
Afsharnejad Z., Bifurcation geometry of Mathieu's equation, Indian J. Pure Appl. Math., 17, pp. 1284-1308, (1986)
[2]  
Arnold V.I., Lectures on bifurcations in versal families, Russian Mathematical Surveys, 27, pp. 54-123, (1972)
[3]  
Arnold V.I., Loss of stability of self-oscillation close to resonance and versal deformations of equivariant vector fields, Functional Analysis and Its Applications, 11, pp. 85-92, (1977)
[4]  
Arnold V.I., Remarks on the perturbation theory for problems of Mathieu type, Russian Mathematical Surveys, 38, pp. 215-233, (1983)
[5]  
Broer H.W., Vegter G., Bifurcational aspects of parametric resonance, Dynamics Reported, New Series, 1, pp. 1-53, (1992)
[6]  
Gelfand I.M., Lidskii V.B., On the structure of stability of linear canonical systems of differential equations with periodic coefficients, Amer. Math. Soc. Transl. (2), 8, pp. 143-181, (1958)
[7]  
Levi M., Stability of the inverted pendulum — a topological explanation, SIAM Review, 30, pp. 639-644, (1988)
[8]  
Levy D.M., Keller J.B., Instability intervals of Hill's equation, Communications on Pure and Applied Mathematics, 16, pp. 469-479, (1963)
[9]  
van der Pol B., Strutt M.J.O., On the stability of the solutions of Mathieu's equation, The London, Edinburgh and Dublin Phil. Mag. 7th Series, 5, pp. 18-38, (1928)
[10]  
Weinstein M.I., Keller J.B., Hill's equation with a large potential, SIAM J. Appl. Math., 45, pp. 954-958, (1985)