EXPLORING THE NATURE OF COVARIATE EFFECTS IN THE PROPORTIONAL HAZARDS MODEL

被引:217
作者
HASTIE, T
TIBSHIRANI, R
机构
[1] UNIV TORONTO,DEPT PREVENT MED & BIOSTAT,TORONTO M5S 1A8,ONTARIO,CANADA
[2] UNIV TORONTO,DEPT STAT,TORONTO M5S 1A8,ONTARIO,CANADA
关键词
NONPARAMETRIC REGRESSION; PROPORTIONAL HAZARDS MODEL; SMOOTHING;
D O I
10.2307/2532444
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss an exploratory technique for investigating the nature of covariate effects in Cox's proportional hazards model. This technique features an additive term-SIGMA-1p f(j)(X(ij)), in place of the usual linear term-SIGMA-1p X(ij)beta-j, where X(i1), X(i2), ..., X(ip) are covariate values for the ith individual. The f(j)(.) are unspecified smooth functions that are estimated using scatterplot smoothers. These functions can be used for descriptive purposes or to suggest transformations of the covariates. The estimation technique is a variation of the local scoring algorithm for generalized additive models (Hastie and Tibshirani, 1986, Statistical Science 1, 297-318).
引用
收藏
页码:1005 / 1016
页数:12
相关论文
共 21 条