UPTAKE OF CS-134/CS-137 IN SOIL BY CEREALS AS A FUNCTION OF SEVERAL SOIL PARAMETERS OF 3 SOIL TYPES IN UPPER SWABIA AND NORTH-RHINE-WESTPHALIA (FRG)

被引:26
作者
BILO, M
STEFFENS, W
FUHR, F
PFEFFER, KH
机构
[1] Institut für Radioagronomie, Forschungszentrums (KFA) Jülich GmbH, D-5170 Jülich
[2] Geographisches Institut der Universität Tübingen, D-7400 Tübingen 1
关键词
D O I
10.1016/0265-931X(93)90056-D
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In 1988 and 1989 soil and winter cereals contaminated with long-lived radionuclides derived from the accident at Chernobyl were sampled in Upper Swabia and North Rhine-Westphalia (NRW). Cs-134, Cs-137 and K-40 were measured and transfer factors Soil-to-Plant (TF(SP)) were determined for radiocaesium in the grain and straw of barley and wheat. Due to the lower deposition of radiocaesium in NRW after the Chernobyl accident, radiocaesium was not detectable in cereals from NRW. In samples from Upper Swabia, one of the most highly contaminated areas in Germany after the reactor accident (43 000 Bq Cs-137/m2), the concentration of radiocaesium in grain was found to be more than one hundred times lower than the concentration of natural K-40. The variation of TF(SP) by about a factor of 43 (grain) and 18 (straw) can be explained by the potassium content of the soil. TF(SP) values, show a pronounced increase below 0.2 meq exchangeable potassium/100 g soil, but do not exceed the value given as a basis for calculation in the German Regulatory Guide of 0.05 (Allgemeine Berechnungsgrundlage). Above the threshold of 0.2 meq K+/100 g, an additional supply of potassium has no effect. Other soil parameters, such as pH value, organic matter content or soil texture, did not have any influence on TF(SP). Possible differences between TF(SP) of the soil types investigated (Fluvisol, Cambisol, Luvisol-Planosol) are concealed by the differing nutrient status of arable soils.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 27 条
[1]  
Baker, Accumulators and excluders—Strategies in the response of plants to heavy metals, Journal of Plant Nutrition, 3, 1-4, pp. 643-665, (1981)
[2]  
Bayerische Staatsministerien für Landesentwicklung und Umweltfragen und Ernährung, Landwirtschaft und Forsten, (1987)
[3]  
Bilo, Untersuchungen zum Transfer des durch den Reaktorunfall von Tschernobyl abgelagerten Radiocäsiums vom Boden in die Pflanze, Jül-2546, (1991)
[4]  
Bilo, Steffens, Fuhr, Pfeffer, Transferfaktoren Boden-Pflanze für Radiocäsium in einer durch den Tschernobyl-Unfall hoch kontaminierten Region Oberschwabens, Tübinger Geowissenschaftliche Arbeiten, series 100, No. 7, pp. 132-151, (1990)
[5]  
Bundesminister des Innern, Allgemeine Berechnungsgrundlage für die Strahlenexposition bei radioaktiven Ableitungen mit der Abluft oder in Oberflächengewässer, (1986)
[6]  
Bundesminister fur Umwelt, Naturschuz und Reaktorsicherheit, Auswirkungen des Reaktorunfalls in Tschernobyl auf die Bundesrepublik Deutschland, Veröffentlichungen der Strahlenschutzkommission, 7 Band, (1987)
[7]  
Bunzl, Kracke, Transfer von <sup>137</sup>Cs und <sup>90</sup>Sr in Mehl, Kleie und Stroh von Weizen, Roggen, Gerste und Hafer in den Jahren 1982, 1986 (Reaktorunfall von Tschernobyl) und 1987 in Feldversuchen, Z. Lebensm. Unters. Forsch., 188, pp. 439-444, (1989)
[8]  
Cline, Aging effects of the availability of Strontium and Cesium to plants, Health Physics, 41, pp. 293-296, (1981)
[9]  
Clooth, Aumann, Environmental transfer parameters and radiological impact of the Chernobyl fallout in and around Bonn (FRG), J. Environ. Radioactivity, 12, pp. 97-119, (1990)
[10]  
Coughtrey, Thorne, Radionuclide distribution and transport in terrestrial and aquatic ecosystems: A critical review of data, 1, (1983)