ASYMPTOTIC EQUIVALENCE OF 2 RANKING METHODS FOR K-SAMPLE LINEAR RANK STATISTICS

被引:24
作者
KOZIOL, JA
REID, N
机构
[1] UNIV BRITISH COLUMBIA,VANCOUVER V6T 1W5,BC,CANADA
[2] STANFORD UNIV,DEPT STAT,STANFORD,CA 94305
关键词
D O I
10.1214/aos/1176343998
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1099 / 1106
页数:8
相关论文
共 13 条
[1]   MULTIPLE COMPARISONS USING RANK SUMS [J].
DUNN, OJ .
TECHNOMETRICS, 1964, 6 (03) :241-&
[2]   ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES [J].
HAJEK, J .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02) :325-&
[3]  
Hajek J., 1967, THEORY RANK TESTS
[4]   A DISTRIBUTION-FREE KAPPA-SAMPLE TEST AGAINST ORDERED ALTERNATIVES [J].
JONCKHEERE, AR .
BIOMETRIKA, 1954, 41 (1-2) :133-145
[5]   A CLASS OF SELECTION PROCEDURES BASED ON RANKS [J].
LEHMANN, EL .
MATHEMATISCHE ANNALEN, 1963, 150 (03) :268-275
[6]  
Lehmann EL, 1998, NONPARAMETRICS STATI, P79
[7]   MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE TESTS [J].
MEHRA, KL ;
PURI, ML .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :523-&
[8]  
MILLER RG, 1966, SIMULTANEOUS STATIST
[10]   A NOTE ON MULTIPLE COMPARISONS USING RANK SUMS [J].
SHERMAN, E .
TECHNOMETRICS, 1965, 7 (02) :255-&