CONTINUITY OF THE PHONON GAP

被引:2
作者
BAESENS, C
MACKAY, RS
机构
[1] Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry
关键词
D O I
10.1016/0375-9601(93)91168-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phonon gap G for an invariant set LAMBDA of a symplectic twist map of R(d) X R(d) with action functional W is the infimum of \\D2W(x)(z)xi\\2 over z is-an-element-of LAMBDA and variations xi with \\xi\\2 = 1. It is proved here that if LAMBDA(k), k is-an-element-of N, is a sequence of compact invariant sets converging in Hausdorff topology to a compact invariant set LAMBDA, then G(LAMBDA(k)) converges to G(LAMBDA). The result implies that the phonon gap is an excellent quantifier of uniform hyperbolicity. Several generalisations are sketched.
引用
收藏
页码:193 / 195
页数:3
相关论文
共 3 条
[1]   EQUIVALENCE OF UNIFORM HYPERBOLICITY FOR SYMPLECTIC TWIST MAPS AND PHONON GAP FOR FRENKEL-KONTOROVA MODELS [J].
AUBRY, S ;
MACKAY, RS ;
BAESENS, C .
PHYSICA D, 1992, 56 (2-3) :123-134
[2]  
BAESENS C, 1993, ONE 2 HOLE TRANSITIO
[3]  
Falconer K.J., 1990, FRACTAL GEOMETRY