SHAPE OFFSETS VIA LEVEL SETS

被引:54
作者
KIMMEL, R [1 ]
BRUCKSTEIN, AM [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT COMP SCI,IL-32000 HAIFA,ISRAEL
关键词
SHAPE OFFSETS; PRAIRIE FIRES; NUMERICAL ALGORITHMS; HUYGENS PRINCIPLE;
D O I
10.1016/0010-4485(93)90040-U
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An algorithm for shape offsetting is presented that is based on level-set propagation. This algorithm avoids the topological problems encountered in traditional offsetting algorithms, and it deals with curvature singularities by including an 'entropy condition' in its numerical implementation.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 23 条
[1]   SHAPE DESCRIPTION USING WEIGHTED SYMMETRIC AXIS FEATURES [J].
BLUM, H ;
NAGEL, RN .
PATTERN RECOGNITION, 1978, 10 (03) :167-180
[2]   SHAPE RECOGNITION PRAIRIE FIRES CONVEX DEFICIENCIES AND SKELETONS [J].
CALABI, L ;
HARTNETT, WE .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04) :335-+
[3]   COMPUTING OFFSETS OF B-SPLINE CURVES [J].
COQUILLART, S .
COMPUTER-AIDED DESIGN, 1987, 19 (06) :305-309
[4]   ERROR BOUNDED VARIABLE DISTANCE OFFSET OPERATOR FOR FREE FORM CURVES AND SURFACES [J].
Elber, Gershon ;
Cohen, Elaine .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (01) :67-78
[5]   CURVATURE CONTINUITY AND OFFSETS FOR PIECEWISE CONICS [J].
FARIN, G .
ACM TRANSACTIONS ON GRAPHICS, 1989, 8 (02) :89-99
[6]  
HELD M, 1991, COMPUTATIONAL GEOMET
[7]  
HOSCHEK J, 1985, COMPUT AIDED DES, V17
[8]   ON THE EVOLUTION OF CURVES VIA A FUNCTION OF CURVATURE .1. THE CLASSICAL CASE [J].
KIMIA, BB ;
TANNENBAUM, A ;
ZUCKER, SW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 163 (02) :438-458
[9]  
KIMIA BB, 1990, THESIS MCGILL U CANA
[10]   AN OFFSET SPLINE APPROXIMATION FOR PLANE CUBIC-SPLINES [J].
KLASS, R .
COMPUTER-AIDED DESIGN, 1983, 15 (05) :297-299