EXISTENCE OF SOLUTIONS OF THE ROBINSON-TRAUTMAN EQUATION AND SPATIAL INFINITY

被引:23
作者
SCHMIDT, BG
机构
关键词
D O I
10.1007/BF00759256
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:65 / 70
页数:6
相关论文
共 9 条
[1]   ELLIPTIC-SYSTEMS IN HS,DELTA-SPACES ON MANIFOLDS WHICH ARE EUCLIDEAN AT INFINITY [J].
CHOQUETBRUHAT, Y ;
CHRISTODOULOU, D .
ACTA MATHEMATICA, 1981, 146 (1-2) :129-150
[2]  
FORSTER J, 1967, J MATH PHYS, V8, P189
[3]   ON PURELY RADIATIVE SPACE-TIMES [J].
FRIEDRICH, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (01) :35-65
[4]  
Kramer D, 1980, EXACT SOLUTIONS EINS
[5]   LYAPUNOV FUNCTIONAL-APPROACH TO RADIATIVE METRICS [J].
LUKACS, B ;
PERJES, Z ;
PORTER, J ;
SEBESTYEN, A .
GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (07) :691-701
[6]   SOME SPHERICAL GRAVITATIONAL WAVES IN GENERAL RELATIVITY [J].
ROBINSON, I ;
TRAUTMAN, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 265 (1323) :463-&
[7]   GRAVITATIONAL-RADIATION NEAR SPATIAL AND NULL INFINITY [J].
SCHMIDT, BG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 410 (1838) :201-208
[8]   ON THE TIME EVOLUTION OF SOME ROBINSON-TRAUTMAN SOLUTIONS .2. [J].
VANDYCK, MAJ .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (03) :759-768
[9]   ON THE TIME-EVOLUTION OF THE ROBINSON-TRAUTMAN SOLUTIONS [J].
VANDYCK, MAJ .
CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (01) :77-86