THE SOLITON CORRELATION MATRIX AND THE REDUCTION PROBLEM FOR INTEGRABLE SYSTEMS

被引:37
作者
HARNAD, J
SAINTAUBIN, Y
SHNIDER, S
机构
[1] MIT,CTR THEORET PHYS,CAMBRIDGE,MA 02139
[2] MCGILL UNIV,DEPT MATH,MONTREAL H3A 2T8,QUEBEC,CANADA
关键词
D O I
10.1007/BF01218638
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:33 / 56
页数:24
相关论文
共 13 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   DUAL SYMMETRY OF THE NONLINEAR SIGMA MODELS [J].
EICHENHERR, H ;
FORGER, M .
NUCLEAR PHYSICS B, 1979, 155 (02) :381-393
[3]   MORE ABOUT NON-LINEAR SIGMA-MODELS ON SYMMETRIC-SPACES [J].
EICHENHERR, H ;
FORGER, M .
NUCLEAR PHYSICS B, 1980, 164 (03) :528-535
[4]   SUPERPOSITION PRINCIPLES FOR MATRIX RICCATI-EQUATIONS [J].
HARNAD, J ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (05) :1062-1072
[5]   BACKLUND-TRANSFORMATIONS FOR NONLINEAR SIGMA-MODELS WITH VALUES IN RIEMANNIAN SYMMETRIC-SPACES [J].
HARNAD, J ;
STAUBIN, Y ;
SHNIDER, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) :329-367
[6]  
HARNAD J, 1984, J MATH PHYS
[7]  
HARNAD J, 1983, PHYSICA D
[8]   THE REDUCTION PROBLEM AND THE INVERSE SCATTERING METHOD [J].
MIKHAILOV, AV .
PHYSICA D, 1981, 3 (1-2) :73-117
[9]  
MIKHAILOV AV, 1980, JETP LETT+, V32, P174
[10]  
SAINTAUBIN Y, 1983, LETT MATH PHYS, V6, P441