MULTIFRACTALS, OPERATOR PRODUCT EXPANSION, AND FIELD-THEORY

被引:93
作者
DUPLANTIER, B
LUDWIG, AWW
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
[2] SIMON FRASER UNIV,DEPT PHYS,BURNABY V5A 1S6,BC,CANADA
关键词
D O I
10.1103/PhysRevLett.66.247
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore possible distinctions between multifractal scaling phenomena and Lagrangian field theories (FT) describing standard critical phenomena, via the operator product expansion. While the scaling dimensions chi-n of multifractal moments must be convex functions of the order n, alalogous FT exponents of powers of the field are concave, by stability and correlation inequalities, and cannot describe multifractal scaling. However, powers of gradients of the field may lead to a novel and unexpected multifractal convexity in a FT, as, e.g., the nonlinear sigma model.
引用
收藏
页码:247 / 251
页数:5
相关论文
共 36 条
[1]   DIFFRACTION PATTERNS FROM THIN HEXATIC FILMS [J].
AHARONY, A ;
KARDAR, M .
PHYSICAL REVIEW LETTERS, 1988, 61 (25) :2855-2858
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[4]   RENORMALIZATION OF NONLINEAR SIGMA-MODEL IN 2+ EPSILON-DIMENSIONS-APPLICATION TO HEISENBERG FERROMAGNETS [J].
BREZIN, E ;
ZINJUSTIN, J .
PHYSICAL REVIEW LETTERS, 1976, 36 (13) :691-694
[5]   MULTIFRACTAL WAVE-FUNCTION AT THE LOCALIZATION THRESHOLD [J].
CASTELLANI, C ;
PELITI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08) :L429-L432
[6]   DIFFUSION NEAR ABSORBING FRACTALS - HARMONIC MEASURE EXPONENTS FOR POLYMERS [J].
CATES, ME ;
WITTEN, TA .
PHYSICAL REVIEW A, 1987, 35 (04) :1809-1824
[7]   SPATIAL CORRELATIONS IN MULTIFRACTALS [J].
CATES, ME ;
DEUTSCH, JM .
PHYSICAL REVIEW A, 1987, 35 (11) :4907-4910
[8]   STATISTICAL-MECHANICS OF POLYMER NETWORKS OF ANY TOPOLOGY [J].
DUPLANTIER, B .
JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (3-4) :581-680
[10]  
FELLER W, 1966, INTRO PROBABILITY TH