A SMOOTH METHOD FOR THE FINITE MINIMAX PROBLEM

被引:63
作者
DIPILLO, G [1 ]
GRIPPO, L [1 ]
LUCIDI, S [1 ]
机构
[1] CNR,IST ANALISI SISTEMI & INFORMAT,ROME,ITALY
关键词
NONLINEAR PROGRAMMING; UNCONSTRAINED OPTIMIZATION; NONDIFFERENTIABLE OPTIMIZATION; MINIMAX PROBLEMS;
D O I
10.1007/BF01580609
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider unconstrained minimax problems where the objective function is the maximum of a finite number of smooth functions. We prove that, under usual assumptions, it is possible to construct a continuously differentiable function, whose minimizers yield the minimizers of the max function and the corresponding minimum values. On this basis, we can define implementable algorithms for the solution of the minimax problem, which are globally convergent at a superlinear convergence rate. Preliminary numerical results are reported.
引用
收藏
页码:187 / 214
页数:28
相关论文
共 39 条
[1]  
[Anonymous], 1989, HDB OPERATIONS RES M, DOI [DOI 10.1016/S0927-0507(89)01008-X, 10.1016/s0927-0507(89)01008-x]
[2]   PRACTICAL LEAST PTH OPTIMIZATION OF NETWORKS [J].
BANDLER, JW ;
CHARALAMBOUS, C .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1972, MT20 (12) :834-840
[3]   EFFICIENT METHOD TO SOLVE MINIMAX PROBLEM DIRECTLY [J].
CHARALAMBOUS, C ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :162-187
[4]   ACCELERATION OF THE LEAST PTH ALGORITHM FOR MINIMAX OPTIMIZATION WITH ENGINEERING APPLICATIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1979, 17 (03) :270-297
[5]  
Clarke FH, 1989, NONSMOOTH OPTIMIZATI
[6]  
Dem'yanov V. F., 1974, INTRO MINIMAX
[7]  
Demyanov VF., 1986, NONDIFFERENTIABLE OP
[8]  
DIPILLO G, 1986, MATH PROGRAM, V36, P1, DOI 10.1007/BF02591986
[9]  
DIPILLO G, IN PRESS SUPERLINEAR
[10]   ALGORITHM FOR L1-NORM MINIMIZATION WITH APPLICATION TO NON-LINEAR L1-APPROXIMATION [J].
ELATTAR, RA ;
VIDYASAGAR, M ;
DUTTA, SRK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :70-86