FINITE-ELEMENT ERROR-ESTIMATES FOR NON-LINEAR ELLIPTIC-EQUATIONS OF MONOTONE TYPE

被引:108
作者
CHOW, SS
机构
关键词
D O I
10.1007/BF01396320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:373 / 393
页数:21
相关论文
共 18 条
[1]   ON THE NUMERICAL-SOLUTION OF NONLINEAR PROBLEMS IN FLUID-DYNAMICS BY LEAST-SQUARES AND FINITE-ELEMENT METHODS .2. APPLICATION TO TRANSONIC FLOW SIMULATIONS [J].
BRISTEAU, MO ;
PIRONNEAU, O ;
GLOWINSKI, R ;
PERIAUX, J ;
PERRIER, P ;
POIRIER, G .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 51 (1-3) :363-394
[2]   SHOCK-FREE REDESIGN USING FINITE-ELEMENTS [J].
CAREY, GF ;
PAN, TT .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1986, 2 (01) :29-35
[3]  
Chaplygin S., 1904, SCI MEM MOSCOW U MAT, V21, P1
[4]  
CHOW SS, 1983, THESIS ANST NAT U CA
[5]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .V. MONOTONE OPERATOR THEORY [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1969, 13 (01) :51-&
[6]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .I. 1 DIMENSIONAL PROBLEM [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1967, 9 (05) :394-&
[7]  
CIARLET PG, 1978, FINITE METHOD ELLIPT
[8]   SHOCK-FREE WING DESIGN [J].
FUNG, KY ;
SOBIECZKY, H ;
SEEBASS, R .
AIAA JOURNAL, 1980, 18 (10) :1153-1158
[9]  
Glowinski R., 1984, NUMERICAL METHODS NO
[10]  
GLOWINSKI R, 1975, REV FRANCAISE AUTO R, V2, P41