CONVERGENCE OF A POINT VORTEX METHOD FOR VORTEX SHEETS

被引:18
作者
HOU, TY [1 ]
LOWENGRUB, J [1 ]
KRASNY, R [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
VORTEX SHEETS; DESINGULARIZATION; SPECTRAL ACCURACY;
D O I
10.1137/0728017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the observation that a point vortex approximation can be made spectrally accurate by using Van de Vooren's desingularization, short time convergence of the point vortex method for both vortex sheets and the Boussinesq approximation are proved using analytic data. The spectral accuracy of the method allows a very simple proof to be obtained without using the Cauchy-Kowalewski theorem.
引用
收藏
页码:308 / 320
页数:13
相关论文
共 15 条
[1]  
ASDANO K, 1988, P JAPAN ACAD AMS, V64, P102
[2]  
Baker G. R., 1983, Waves on Fluid Interfaces. Proceedings of a Symposium, P53
[3]   LONG-TIME EXISTENCE FOR A SLIGHTLY PERTURBED VORTEX SHEET [J].
CAFLISCH, RE ;
ORELLANA, OF .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :807-838
[4]   CONVERGENCE OF THE VORTEX METHOD FOR VORTEX SHEETS [J].
CAFLISCH, RE ;
LOWENGRUB, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1060-1080
[5]   GLOBAL VORTEX SHEET SOLUTIONS OF EULER EQUATIONS IN THE PLANE [J].
DUCHON, J ;
ROBERT, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :215-224
[6]  
Dym H., 1972, FOURIER SERIES INTEG
[8]  
LOWENGRUB J, 1988, THESIS NEW YORK U NE
[9]   A STABLE AND ACCURATE NUMERICAL-METHOD TO CALCULATE THE MOTION OF A SHARP INTERFACE BETWEEN FLUIDS [J].
ROBERTS, AJ .
IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 31 (01) :13-35
[10]  
SHELLEY M, IN PRESS J FLUID MEC