NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION BY DELTA SEQUENCES

被引:4
作者
ISOGAI, E [1 ]
机构
[1] NIIGATA UNIV,DEPT MATH,NIIGATA 95021,JAPAN
关键词
NONPARAMETRIC REGRESSION; MEAN SQUARE CONVERGENCE; STRONG CONSISTENCY; DELTA SEQUENCES;
D O I
10.1007/BF02481145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A somewhat more general class of nonparametric estimators for estimating an unknown regression function g from noisy data is proposed. The regressor is assumed to be defined on the closed interval [0, 1]. This class of estimators is shown to be pointwisely consistent in the mean square sense and with probability one. Further, it turns out that these estimators can be applied to a wide class of noises.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 17 条
[1]   FITTING A MULTIPLE-REGRESSION FUNCTION [J].
AHMAD, IA ;
LIN, PE .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1984, 9 (02) :163-176
[2]   NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION [J].
CHENG, KF ;
LIN, PE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :223-233
[3]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[4]   NONPARAMETRIC FITTING OF MULTIVARIATE FUNCTIONS [J].
GALKOWSKI, T ;
RUTKOWSKI, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (08) :785-787
[5]  
GASSER T, 1984, SCAND J STAT, V11, P171
[6]  
GASSER T, 1979, LECT NOTES MATH, V757, P26
[7]   NONPARAMETRIC FUNCTION RECOVERING FROM NOISY OBSERVATIONS [J].
GEORGIEV, AA ;
GREBLICKI, W .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 13 (01) :1-14
[9]   CONSISTENT NONPARAMETRIC MULTIPLE-REGRESSION - THE FIXED DESIGN CASE [J].
GEORGIEV, AA .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 25 (01) :100-110
[10]   NONPARAMETRIC KERNEL ALGORITHM FOR RECOVERY OF FUNCTIONS FROM NOISY MEASUREMENTS WITH APPLICATIONS. [J].
Georgiev, Alexander A. .
IEEE Transactions on Automatic Control, 1985, AC-30 (08) :782-784