OCULOCENTRIC SPATIAL REPRESENTATION IN PARIETAL CORTEX

被引:208
作者
COLBY, CL [1 ]
DUHAMEL, JR [1 ]
GOLDBERG, ME [1 ]
机构
[1] NEI,SENSORIMOTOR RES LAB,BETHESDA,MD 20892
关键词
D O I
10.1093/cercor/5.5.470
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Parietal cortex comprises several distinct areas. Neurons in each area are selective for particular stimulus dimensions and particular regions of space. The representation of space in a given area reflects a particular motor output by which a stimulus can be acquired. Neurons in the lateral intraparietal area (LIP) are active in relation to both visual and motor events. LIP neurons do not transmit an unambiguous saccadic command. Rather, they signal the location at which an event has occurred. These spatial locations are encoded in oculocentric coordinates, that is, with respect to the current or anticipated position of the center of gaze. When an eye movement brings the spatial location of a recently flashed stimulus into the receptive field of an LIP neuron, the neuron responds to the memory trace of that stimulus. This result indicates that, for nearly all LIP neurons, stored visual information is remapped in conjunction with saccades. Remapping of the memory trace maintains the alignment between the current image on the retina and the stored representation in cortex. Further, when an eye movement is about to occur, more than a third of LIP neurons transiently shift the location of their receptive fields. This anticipatory remapping allows the neuron to begin to respond to a visual stimulus even before the saccade is initiated that will bring the stimulus into the fixation-defined receptive field. Both kinds of remapping serve to create a constantly updated representation of stimulus location that is always in terms of distance and direction from the fovea. This oculocentric representation has the advantage that it already matches that known to exist in the frontal eye fields and the superior colliculus, the output targets of LIP, and it does not require further coordinate transformation in order to contribute to spatially accurate behavior. These results indicate that LIP can analyze visual space without ever forming a representation of absolute target position.
引用
收藏
页码:470 / 481
页数:12
相关论文
共 38 条
[1]   CALLOSAL AND PREFRONTAL ASSOCIATIONAL PROJECTING CELL-POPULATIONS IN AREA-7A OF THE MACAQUE MONKEY - A STUDY USING RETROGRADELY TRANSPORTED FLUORESCENT DYES [J].
ANDERSEN, RA ;
ASANUMA, C ;
COWAN, WM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 232 (04) :443-455
[2]  
ANDERSEN RA, 1990, J NEUROSCI, V10, P1176
[3]   VISUAL RECEPTIVE-FIELD ORGANIZATION AND CORTICO-CORTICAL CONNECTIONS OF THE LATERAL INTRAPARIETAL AREA (AREA LIP) IN THE MACAQUE [J].
BLATT, GJ ;
ANDERSEN, RA ;
STONER, GR .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 299 (04) :421-445
[4]   PARTICIPATION OF PREFRONTAL NEURONS IN THE PREPARATION OF VISUALLY GUIDED EYE-MOVEMENTS IN THE RHESUS-MONKEY [J].
BOCH, RA ;
GOLDBERG, ME .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 61 (05) :1064-1084
[5]   PRIMATE FRONTAL EYE FIELDS .1. SINGLE NEURONS DISCHARGING BEFORE SACCADES [J].
BRUCE, CJ ;
GOLDBERG, ME .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 53 (03) :603-635
[6]   BEHAVIORAL ENHANCEMENT OF VISUAL RESPONSES IN MONKEY CEREBRAL-CORTEX .1. MODULATION IN POSTERIOR PARIETAL CORTEX RELATED TO SELECTIVE VISUAL-ATTENTION [J].
BUSHNELL, MC ;
GOLDBERG, ME ;
ROBINSON, DL .
JOURNAL OF NEUROPHYSIOLOGY, 1981, 46 (04) :755-772
[7]   LOSS OF THE NEURAL INTEGRATOR OF THE OCULOMOTOR SYSTEM FROM BRAIN-STEM LESIONS IN MONKEY [J].
CANNON, SC ;
ROBINSON, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1987, 57 (05) :1383-1409
[8]   POSTERIOR PARIETAL CORTEX IN RHESUS-MONKEY .1. PARCELLATION OF AREAS BASED ON DISTINCTIVE LIMBIC AND SENSORY CORTICOCORTICAL CONNECTIONS [J].
CAVADA, C ;
GOLDMANRAKIC, PS .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 287 (04) :393-421
[9]   THE ANALYSIS OF VISUAL SPACE BY THE LATERAL INTRAPARIETAL AREA OF THE MONKEY - THE ROLE OF EXTRARETINAL SIGNALS [J].
COLBY, CL ;
DUHAMEL, JR ;
GOLDBERG, ME .
PROGRESS IN BRAIN RESEARCH, 1993, 95 :307-316
[10]  
COLBY CL, 1991, NEUROPSYCHOLOGIA, V29, P497