Layered Neural Networks with Gaussian Hidden Units as Universal Approximations

被引:521
作者
Hartman, Eric J. [1 ]
Keeler, James D. [1 ]
Kowalski, Jacek M. [2 ]
机构
[1] Microelect & Comp Technol Corp MCC, 3500 West Balcones Ctr Dr, Austin, TX 78759 USA
[2] Univ North Texas, Dept Phys, Denton, TX 76203 USA
关键词
D O I
10.1162/neco.1990.2.2.210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A neural network with a single layer of hidden units of gaussian type is proved to be a universal approximator for real-valued maps defined on convex, compact sets of R-n.
引用
收藏
页码:210 / 215
页数:6
相关论文
共 15 条
[1]   Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks [J].
Durbin, Richard ;
Rumelhart, David E. .
NEURAL COMPUTATION, 1989, 1 (01) :133-142
[2]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[3]   ON THE APPROXIMATE REALIZATION OF CONTINUOUS-MAPPINGS BY NEURAL NETWORKS [J].
FUNAHASHI, K .
NEURAL NETWORKS, 1989, 2 (03) :183-192
[4]  
Hornik M., 1989, NEURAL NETW IN PRESS
[5]  
Lapedes A., 1987, LAUR88418 LOS AL NAT
[6]  
Lee S., 1988, IEEE INT C NEUR NETW, P1
[7]  
Lorentz G. G., 1986, APPROXIMATIONS FUNCT
[8]  
MEDGYESSY P, 1961, DECOMPOSITION SUPERP
[9]  
Moody J., 1989, PREPRINT
[10]  
MOODY J, 1989, P 1988 CONN MOD SUMM