A NONLINEAR PLS MODEL

被引:115
作者
FRANK, IE
机构
[1] JerIl, Inc., Stanford, CA 94305
关键词
D O I
10.1016/0169-7439(90)80128-S
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Frank, I.E., 1990. A nonlinear PLS model. Chemometrics and Intelligent Laboratory Systems, 8: 109-119. A nonlinear extension of the PLS (partial least squares regression) method is introduced. The algorithm connects the predictor and response latent variables by a smooth but otherwise unrestricted nonlinear function. Similarities and differences between the linear and nonlinear PLS models are discussed. The performance of the new nonlinear PLS method is illustrated on three chemical data sets with different covariance structures. © 1990.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 12 条
[1]  
Geladi, Kowalski, Partial least squares regression (PLS): a tutorial, Analytica Chimica Acta, 185, pp. 1-17, (1986)
[2]  
Lorber, Wangen, Kowalski, A theoretical foundation for the PLS algorithm, Journal of Chemometrics, 1, pp. 19-31, (1987)
[3]  
Frank, Intermediate least squares regression method, Chemometrics and Intelligent Laboratory Systems, 1, pp. 233-242, (1987)
[4]  
Hoskuldsson, PLS regression methods, Journal of Chemometrics, 2, pp. 211-228, (1988)
[5]  
Frank, Lanteri, ACE: A nonlinear regression model, Chemometrics and Intelligent Laboratory Systems, 3, pp. 301-313, (1988)
[6]  
Kvalheim, Latent-structure decompositions (projections) of multivariate data, Chemometrics and Intelligent Laboratory Systems, 2, pp. 283-290, (1987)
[7]  
Wold, Kettaneh-Wold, Skagerberg, Nonlinear PLS modeling, Chemometrics and Intelligent Laboratory Systems, 7, pp. 53-65, (1989)
[8]  
Friedman, Technical Report, (1984)
[9]  
Friedman, A variable span smoother, (1984)
[10]  
Wright, Gambino, Quantitative structure-activity relationship of 6-anilinouracils as inhibitors of Bacillus subtilis DNA polymerase III, Journal Medical Chemistry, 27, pp. 181-185, (1984)