A VARIATIONAL COUPLED-MODE THEORY FOR PERIODIC WAVE-GUIDES

被引:19
作者
LITTLE, BE
HAUS, HA
机构
[1] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge
关键词
D O I
10.1109/3.477755
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple variational theorem for the dispersion relations and propagation constants of periodic waveguides is derived, The trial fields used in the variational formula incorporate an the Floquet components correct to first order. This yields a propagation constant in which errors enter only to fourth order in the trial field, The analysis yields a new coupled mode formulation which is shown to yield excellent agreement with exact analytic solutions (in 1-D), and numerical simulations (in 2-D), for high-index contrast structures.
引用
收藏
页码:2258 / 2264
页数:7
相关论文
共 17 条
[1]  
ABROMOWITZ M, 1972, HDB MATH FUNCTIONS, P727
[2]  
CHEN JC, 1995, GUIDED WAVE OPTOELEC
[3]  
GAYLORD TK, IEEE P, V73, P894
[4]   COUPLED-MODE THEORY FOR CORRUGATED OPTICAL WAVE-GUIDES [J].
HALL, DG .
OPTICS LETTERS, 1990, 15 (11) :619-621
[6]   THEORY OF CASCADED QUARTER WAVE SHIFTED DISTRIBUTED FEEDBACK RESONATORS [J].
HAUS, HA ;
LAI, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (01) :205-213
[7]   COUPLED-MODE THEORY OF OPTICAL WAVE-GUIDES [J].
HAUS, HA ;
HUANG, WP ;
KAWAKAMI, S ;
WHITAKER, NA .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1987, 5 (01) :16-23
[8]  
HAUS HA, 1985, IEEE T SON ULTRASON, V32, P395
[9]   FLOQUET AND COUPLED-WAVES ANALYSIS OF HIGHER-ORDER BRAGG COUPLING IN A PERIODIC MEDIUM [J].
JAGGARD, DL ;
ELACHI, C .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (07) :674-682
[10]  
LITTLE BE, IN PRESS IEEE J LIGH