GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY

被引:93
作者
BERETTA, E [1 ]
TAKEUCHI, Y [1 ]
机构
[1] SHIZUOKA UNIV,FAC ENGN,DEPT APPL MATH,HAMAMATSU,SHIZUOKA 432,JAPAN
关键词
D O I
10.1137/0148035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:627 / 651
页数:25
相关论文
共 20 条
[1]   PERSISTENCE AND EXTINCTION IN LOTKA-VOLTERRA REACTION DIFFUSION-EQUATIONS [J].
ALLEN, LJS .
MATHEMATICAL BIOSCIENCES, 1983, 65 (01) :1-12
[2]  
[Anonymous], 1981, PATHWAYS SOLUTIONS F
[3]   A GENERALIZATION OF VOLTERRA MODELS WITH CONTINUOUS-TIME DELAY IN POPULATION-DYNAMICS - BOUNDEDNESS AND GLOBAL ASYMPTOTIC STABILITY [J].
BERETTA, E ;
SOLIMANO, F .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :607-626
[4]  
Berman A., 1979, NONNEGATIVE MATRICES, DOI DOI 10.1137/1.9781611971262
[5]  
CUSHING JM, 1977, LECTURE NOTES BIOMAT, V20
[6]   MATHEMATICAL-MODELS OF POPULATION INTERACTIONS WITH DISPERSAL .2. DIFFERENTIAL SURVIVAL IN A CHANGE OF HABITAT [J].
FREEDMAN, HI ;
RAI, B ;
WALTMAN, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (01) :140-154
[7]  
Goh B., 1980, MANAGEMENT ANAL BIOL, P9
[8]   GLOBAL ASYMPTOTIC STABILITY IN VOLTERRA POPULATION SYSTEMS [J].
GOPALSAMY, K .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (02) :157-168
[9]  
HASTINGS A, 1978, J MATH BIOL, V6, P163, DOI 10.1007/BF02450786