A COMPARISON OF ADAPTIVE CHEBYSHEV AND LEAST-SQUARES POLYNOMIAL PRECONDITIONING FOR HERMITIAN POSITIVE DEFINITE LINEAR-SYSTEMS

被引:28
作者
ASHBY, SF [1 ]
MANTEUFFEL, TA [1 ]
OTTO, JS [1 ]
机构
[1] UNIV COLORADO,COMPUTAT MATH GRP,DENVER,CO 80217
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1992年 / 13卷 / 01期
关键词
CONJUGATE GRADIENT METHODS; POLYNOMIAL PRECONDITIONING; CHEBYSHEV POLYNOMIAL; LEAST SQUARES POLYNOMIAL; ADAPTIVE PROCEDURE;
D O I
10.1137/0913001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explores the use of adaptive polynomial preconditioning for Hermitian positive definite linear systems, Ax = b. Such preconditioners are easy to employ and well suited to vector and/or parallel machines. After examining the role of polynomial preconditioning in conjugate gradient methods, the least squares and Chebyshev preconditioning polynomials are discussed. Eigenvalue distributions for which each is well suited are then determined. An adaptive procedure for dynamically computing the best Chebyshev polynomial preconditioner is also described. Finally, the effectiveness of adaptive polynomial preconditioning is demonstrated in a variety of numerical experiments on a Cray X-MP/48 and Alliant FX/8. The results suggest that relatively low degree (2-16) polynomials are usually best.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 32 条
[1]   M-STEP PRECONDITIONED CONJUGATE-GRADIENT METHODS [J].
ADAMS, L .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02) :452-463
[2]  
ADAMS L, 1982, THESIS U VIRGINIA CH
[3]   A TAXONOMY FOR CONJUGATE-GRADIENT METHODS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1542-1568
[5]   ADAPTIVE POLYNOMIAL PRECONDITIONING FOR HERMITIAN INDEFINITE LINEAR-SYSTEMS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
BIT, 1989, 29 (04) :583-609
[6]  
ASHBY SF, 1990, 9TH P INT C COMP MET, P3
[7]  
ASHBY SF, 1987, 1355 U ILL DEP COMP
[8]   MATRIX-FREE METHODS FOR STIFF SYSTEMS OF ODES [J].
BROWN, PN ;
HINDMARSH, AC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (03) :610-638
[9]  
CHAN TF, 1988, CAM8822 U CAL DEP MA
[10]  
CHANDRA R, 1977, ADV COMPUTER METHODS, V2, P13