SOLVING MORE GENERAL INDEX-2 DIFFERENTIAL-ALGEBRAIC EQUATIONS

被引:8
作者
MARZ, R
TISCHENDORF, C
机构
[1] Humboldt-University Berlin Unter den Linden 6
关键词
ORDINARY DIFFERENTIAL EQUATIONS; DIFFERENTIAL ALGEBRAIC EQUATIONS; INITIAL VALUE PROBLEMS; NUMERICAL INTEGRATION METHODS; BACKWARD DIFFERENTIATION; RUNGE-KUTTA METHODS;
D O I
10.1016/0898-1221(94)00187-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a class of quasilinear index-2 differential algebraic equations, which covers both linear variable coefficient systems as well as Hessenberg form equations. Supposing low smoothness only, the solvability of initial value problems is stated via classical analytical techniques. For that class of differential algebraic equations, backward differentiation formulas and Runge-Kutta methods as well as projected versions are discussed with respect to feasibility, (in)stability, convergence, and asymptotical behaviour.
引用
收藏
页码:77 / 105
页数:29
相关论文
共 20 条
[1]   PROJECTED IMPLICIT RUNGE-KUTTA METHODS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
ASCHER, UM ;
PETZOLD, LR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :1097-1120
[2]  
Brenan K. E., 1989, NUMERICAL SOLUTION I
[3]  
Butcher J. C., 1987, NUMERICAL ANAL ORDIN
[4]  
CHUA LO, 1989, INT J CIRC THEOR APP, V17, P213, DOI 10.1002/cta.4490170207
[5]  
DENK G, 1989, TUMM8903 TU MUNCH MA
[6]  
GEAR CW, 1981, P OBERWOLFACH C STIF
[7]  
GEAR CW, 9 I GEOM PRAKT MATH
[8]  
GRIEPENTROG E, 1992, BERLIN SEMINAR DIFFE, P14
[9]  
Griepentrog E, 1989, Z ANAL ANWEND, V8, P25
[10]  
Griepentrog E., 1986, TEUBNER TEXTE MATH, V88