FLOQUET THEORY FOR PARABOLIC DIFFERENTIAL-EQUATIONS

被引:26
作者
CHOW, SN
LU, KN
MALLETPARET, J
机构
[1] BRIGHAM YOUNG UNIV,DEPT MATH,PROVO,UT 84602
[2] BROWN UNIV,DEPT APPL MATH,PROVIDENCE,RI 02912
关键词
D O I
10.1006/jdeq.1994.1047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:147 / 200
页数:54
相关论文
共 15 条
[1]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[2]  
[Anonymous], [No title captured]
[3]   INVARIANT-MANIFOLDS FOR FLOWS IN BANACH-SPACES [J].
CHOW, SN ;
LU, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (02) :285-317
[4]  
CHOW SN, UNPUB FLOQUET BUNDLE
[5]  
Gel'fand I., 1955, AM MATH SOC TRANSL, V1, P253
[6]  
Hale J.K., 1969, ORDINARY DIFFERENTIA, VXXI, P332
[7]  
HENRY D, 1981, LECTURE NOTES MATH, V84
[8]  
HUANG Y, ASYMPTOTICS SPECTRUM
[9]   FLOQUET THEORY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
KUCHMENT, PA .
RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (04) :1-60
[10]  
Levitan B. M., 1987, INVERSE STURM LIOUVI