SOME SPECTRAL APPROXIMATIONS OF 2-DIMENSIONAL 4TH-ORDER PROBLEMS

被引:29
作者
BERNARDI, C [1 ]
COPPOLETTA, G [1 ]
MADAY, Y [1 ]
机构
[1] UNIV PARIS 06,F-75252 PARIS 05,FRANCE
关键词
D O I
10.2307/2152980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the approximation of the biharmonic equation in a square domain with Dirichlet boundary conditions. Two types of discrete problems are presented, the numerical analysis is performed, and estimates for the error between the exact and approximate solutions are given.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 16 条
[1]  
Bernardi C., 1981, Calcolo, V18, P255, DOI 10.1007/BF02576359
[2]  
BERNARDI C, IN PRESS HDB NUMERIC
[3]  
Bernardi C., 1990, 90021 U P M CUR LAB
[4]  
Bernardi C., 1991, PROGR APPROXIMATION, P43
[5]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[6]  
Canuto C., 1987, SPECTRAL METHODS FLU
[7]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[8]   SOME RESULTS ABOUT THE PSEUDOSPECTRAL APPROXIMATION OF ONE-DIMENSIONAL 4TH-ORDER PROBLEMS [J].
FUNARO, D ;
HEINRICHS, W .
NUMERISCHE MATHEMATIK, 1990, 58 (04) :399-418
[9]  
GATTESCHI L, 1963, ATTI ACCAD SCI SFMN, V98, P641
[10]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24