NEW DEFINITION OF DYNAMIC ENTROPY FOR NONCOMMUTATIVE SYSTEMS

被引:41
作者
SAUVAGEOT, JL
THOUVENOT, JP
机构
关键词
D O I
10.1007/BF02099145
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An alternative definition of entropy for non-commutative systems, equivalent to the one by A. Connes, H. Narnhofer, and W. Thirring, is given. It is based on the concepts of conditional entropy, and stationary couplings with classical systems. It allows to prove that any quantum dynamical system with singular spectrum has zero entropy.
引用
收藏
页码:411 / 423
页数:13
相关论文
共 8 条
[1]  
Araki H., 1976, PUBL RES I MATH SCI, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
[2]   DYNAMIC ENTROPY OF C-STAR ALGEBRAS AND VONNEUMANN-ALGEBRAS [J].
CONNES, A ;
NARNHOFER, H ;
THIRRING, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (04) :691-719
[3]   ENTROPY FOR AUTOMORPHISMS OF II1 VONNEUMANN ALGEBRAS [J].
CONNES, A ;
STORMER, E .
ACTA MATHEMATICA, 1975, 134 (3-4) :289-306
[4]  
CONNES A, 1985, CR ACAD SCI I-MATH, V301, P1
[5]  
Ohya M., 1989, Reports on Mathematical Physics, V27, P19, DOI 10.1016/0034-4877(89)90034-7
[6]  
Sinai G., 1964, MAT SBORNIK, V63, P23
[7]   ENTROPY OF BOGOLIUBOV AUTOMORPHISMS OF THE CANONICAL ANTICOMMUTATION RELATIONS [J].
STORMER, E ;
VOICULESCU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 133 (03) :521-542
[8]  
VOICULESCU D, IN PRESS ENTROPY DYN