CRITICAL-DYNAMICS - A CONSEQUENCE OF A RANDOM, STEPWISE GROWTH OF CLUSTERS

被引:23
作者
ALEXANDROWICZ, Z
机构
[1] Department of Polymer Research, Weizmann Institute of Science, Rehovot
来源
PHYSICA A | 1990年 / 167卷 / 02期
关键词
D O I
10.1016/0378-4371(90)90117-B
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Critical dynamics of correlated particles (here Glauber dynamics of singly flipping Ising spins) is explained by a random, stepwise growth and contraction of clusters, as follows. At equilibrium, a cluster of size s is described by its length l (a random walk-like path, connecting a sequence of neighbor spins). The length scales as l∼sρ, where ρ constitutes a new static critical exponent. We assume that, on the average, the random growth of a cluster from zero, to size s and length ls, requires a sequence of l2 spin flips. This gives for dynamic critical exponent, z= [2ρ(γ+β)-β] ν, where γ, β and ν are the usual static exponents. Exact results at dimension D=1 and 4, and simulation results at D=2 and 3, support the theory. © 1990.
引用
收藏
页码:322 / 332
页数:11
相关论文
共 21 条
[1]   CRITICALLY BRANCHED CHAINS AND PERCOLATION CLUSTERS [J].
ALEXANDROWICZ, Z .
PHYSICS LETTERS A, 1980, 80 (04) :284-286
[2]   SWENDSEN-WANG SIMULATION OF ISING SPINS AND A PRECISE DEFINITION OF CRITICAL CLUSTERS [J].
ALEXANDROWICZ, Z .
PHYSICA A, 1989, 160 (03) :310-320
[3]   NEW DEFINITION AND SIMULATION OF CRITICAL CLUSTERS OF ISING SPINS [J].
ALEXANDROWICZ, Z .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :669-672
[4]   THE CORRELATION BETWEEN ACTIVITIES OF POLYELECTROLYTES, MEASURED BY THE LIGHT-SCATTERING AND OSMOTIC METHODS [J].
ALEXANDROWICZ, Z .
JOURNAL OF POLYMER SCIENCE, 1959, 40 (136) :91-106
[5]   CRITICAL-DYNAMICS OF AN INTERFACE IN 1 + EPSILON DIMENSIONS [J].
BAUSCH, R ;
DOHM, V ;
JANSSEN, HK ;
ZIA, RKP .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1837-1840
[6]  
BINDER K, 1974, PHYS REV B, V10, P3853, DOI 10.1103/PhysRevB.10.3853
[7]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[8]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[9]   SCALING ANSATZ FOR SWENDSEN-WANG DYNAMICS [J].
KLEIN, W ;
RAY, T ;
TAMAYO, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (02) :163-166
[10]   SCALING OF KINETICALLY GROWING CLUSTERS [J].
KOLB, M ;
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1123-1126