THE TREATMENT OF NONHOMOGENEOUS DIRICHLET BOUNDARY-CONDITIONS BY THE P-VERSION OF THE FINITE-ELEMENT METHOD

被引:19
作者
BABUSKA, I [1 ]
SURI, M [1 ]
机构
[1] UNIV MARYLAND,CATONSVILLE,MD 21228
关键词
D O I
10.1007/BF01395874
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:97 / 121
页数:25
相关论文
共 18 条
[1]  
ANDERSSON B, 1986, JUN NATO ASI LISB
[2]   FINITE-ELEMENT METHODS - PRINCIPLES FOR THEIR SELECTION [J].
ARNOLD, DN ;
BABUSKA, I ;
OSBORN, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :57-96
[3]   THE H-P VERSION OF THE FINITE-ELEMENT METHOD FOR DOMAINS WITH CURVED BOUNDARIES [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) :837-861
[4]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[5]  
BABUSKA I, 1987, RAIRO MODEL MATH ANA, V21, P198
[6]  
Babuska I., 1988, FINITE ELEMENTS, P199
[7]  
BABUSKA I, UNPUB LECTURE NOTES
[8]  
BARNAHRT MA, 1986, 1ST WORLD C COMP MEC
[9]  
BERGH I, 1976, INTERPOLATION SPACES
[10]   THE H-VERSION, P-VERSION AND H-P-VERSION OF THE FINITE-ELEMENT METHOD IN 1-DIMENSION .3. THE ADAPTIVE H-P-VERSION [J].
GUI, W ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1986, 49 (06) :613-657