GAUGE FIELD-THEORY OF THE QUANTUM GROUP SUQ(2)

被引:23
作者
HIRAYAMA, M
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1992年 / 88卷 / 01期
关键词
D O I
10.1143/PTP.88.111
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The gauge field theory of the quantum group SU(q)(2) is formulated. The parallelism to the case of SU(2) is maintained with the help of the definition of the SU(q)(2) gauge transformations preserving some group-like properties, the differential calculus on SU(q)(2) developed by Woronowicz, and the q-deformed trace. The Lagrangian invariant under local SU(q)(2) transformations is obtained.
引用
收藏
页码:111 / 127
页数:17
相关论文
共 19 条
[1]   HIDDEN QUANTUM SYMMETRIES IN RATIONAL CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1989, 319 (01) :155-186
[2]   QUANTUM GROUP GAUGE-FIELDS [J].
AREFEVA, IY ;
VOLOVICH, IV .
MODERN PHYSICS LETTERS A, 1991, 6 (10) :893-907
[3]  
BERNARD D, 1990, PROG THEOR PHYS SUPP, P49, DOI 10.1143/PTPS.102.49
[4]   A QUANTUM LORENTZ GROUP [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (17) :3081-3108
[5]  
DRINFELD VG, 1986, P INT C MATH BERKELE, P793
[6]   THE QUANTUM GROUP-STRUCTURE OF 2D GRAVITY AND MINIMAL MODELS .1. [J].
GERVAIS, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (02) :257-283
[7]   PARTIAL-SYMMETRIES OF WEAK INTERACTIONS [J].
GLASHOW, SL .
NUCLEAR PHYSICS, 1961, 22 (04) :579-&
[8]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[9]   QUANTUM DEFORMATIONS OF CERTAIN SIMPLE MODULES OVER ENVELOPING-ALGEBRAS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :237-249
[10]   REPRESENTATIONS OF THE QUANTUM GROUP SUQ(2) AND THE LITTLE Q-JACOBI POLYNOMIALS [J].
MASUDA, T ;
MIMACHI, K ;
NAKAGAMI, Y ;
NOUMI, M ;
UENO, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :357-386