PARTITION-FUNCTIONS FOR HETEROTIC WZW CONFORMAL FIELD-THEORIES

被引:13
作者
GANNON, T
机构
[1] Mathematics Department, Carleton University, Ottawa
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0550-3213(93)90127-B
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Thus far in the search for, and classification of, ''physical'' modular invariant partition functions SIGMAN(LR)chi(L)chi(R)* the attention has been focused on the symmetric case where the holomorphic and anti-holomorphic sectors, and hence the characters chi(L) and chi(R), are associated with the same Kac-Moody algebras g(L) = g(R) and levels k(L) = k(R). In this paper we consider the more general possibility where (g(L), k(L)) may not equal (g(R), k(R)). We discuss which choices of algebras and levels may correspond to well-defined conformal field theories, we find the ''smallest'' such heterotic (i.e. asymmetric) partition functions, and we give a method, generalizing the Roberts-Terao-Warner lattice method, for explicitly constructing many other modular invariants. We conclude the paper by proving that this new lattice method will succeed in generating all the heterotic partition functions, for all choices of algebras and levels.
引用
收藏
页码:729 / 753
页数:25
相关论文
共 22 条
[1]   MODULAR TRANSFORMATIONS OF SU(N) AFFINE CHARACTERS AND THEIR COMMUTANT [J].
BAUER, M ;
ITZYKSON, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :617-636
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]  
CAPELLI A, 1987, NUCL PHYS B, V280, P445
[4]  
Conway J.H., 1988, SPHERE PACKINGS LATT
[5]   LATTICES AND THETA-FUNCTION IDENTITIES .2. THETA-SERIES [J].
GANNON, T ;
LAM, CS .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (03) :871-887
[6]  
GANNON T, IN PRESS NUCL PHYS B
[7]   HETEROTIC STRING THEORY .2. THE INTERACTING HETEROTIC STRING [J].
GROSS, DJ ;
HARVEY, JA ;
MARTINEC, E ;
ROHM, R .
NUCLEAR PHYSICS B, 1986, 267 (01) :75-124
[8]   HETEROTIC STRING THEORY .1. THE FREE HETEROTIC STRING [J].
GROSS, DJ ;
HARVEY, JA ;
MARTINEC, E ;
ROHM, R .
NUCLEAR PHYSICS B, 1985, 256 (02) :253-284
[9]  
HOKIM Q, 1993, LOW LEVEL MODULAR IN
[10]  
Kac V.G., 1990, INFINITE DIMENSIONAL