A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .5. CIRCUMVENTING THE BABUSKA-BREZZI CONDITION - A STABLE PETROV-GALERKIN FORMULATION OF THE STOKES PROBLEM ACCOMMODATING EQUAL-ORDER INTERPOLATIONS

被引:1125
作者
HUGHES, TJR
FRANCA, LP
BALESTRA, M
机构
[1] Stanford Univ, Stanford, CA, USA, Stanford Univ, Stanford, CA, USA
关键词
MATHEMATICAL TECHNIQUES - Finite Element Method;
D O I
10.1016/0045-7825(86)90025-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new Petrov-Galerkin formulation of the Stokes problem is proposed. The new formulation possesses better stability properties than the classical Galerkin/variational method. An error analysis is performed for the case in which both the velocity and pressure are approximated by C**0 interpolations. Combinations of C**0 interpolations which are unstable according to the Babuska-Brezzi condition (e. g. , equal-order interpolations) are shown to be stable and convergent within the present framework. Calculations exhibiting the good behavior of the methodology are presented.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 11 条
[1]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[2]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[3]  
BREZZI F, 1984, MATA219 HELS U TECHN
[4]  
BREZZI F, 1985, P GAMM SEMINAR KIEL, P11
[5]  
HELLINGER E, 1914, ENCY MATH WISSENSCHA, V4, P602
[7]  
Hughes T.J.R., 1982, FINITE ELEMENTS FLUI, V4, P46
[8]  
JOHNSON C, 1985, FINITE ELEMENTS FLUI, V6, P251
[9]  
JOHNSON C, 1984, STREAMLINE DIFFUSION
[10]  
Oden J.T., 1983, FINITE ELEMENTS MATH, VIV