EQUIVALENT QUANTIZATIONS OF (2+1)-DIMENSIONAL GRAVITY

被引:22
作者
CARLIP, S [1 ]
NELSON, JE [1 ]
机构
[1] UNIV TURIN, DIPARTIMENTO FIS TEOR, I-10125 TURIN, ITALY
关键词
D O I
10.1016/0370-2693(94)90197-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For spacetimes with the topology R x T2, the action of (2 + 1)-dimensional gravity with negative cosmological constant LAMBDA is written uniquely in terms of the time-independent traces of holonomies around two intersecting noncontractible paths on T2. The holonomy parameters are related to the moduli on slices of constant mean curvature by a time-dependent canonical transformation which introduces an effective Hamiltonian. The quantisation of the two classically equivalent formulations differs by terms of order O(HBAR3), negligible for small \LAMBDA\.
引用
收藏
页码:299 / 302
页数:4
相关论文
共 15 条
[1]   OBSERVABLES, GAUGE-INVARIANCE, AND TIME IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY [J].
CARLIP, S .
PHYSICAL REVIEW D, 1990, 42 (08) :2647-2654
[2]   MODULAR GROUP, OPERATOR ORDERING, AND TIME IN (2+1)-DIMENSIONAL GRAVITY [J].
CARLIP, S .
PHYSICAL REVIEW D, 1993, 47 (10) :4520-4524
[3]   (2+1)-DIMENSIONAL CHERN-SIMONS GRAVITY AS A DIRAC SQUARE ROOT [J].
CARLIP, S .
PHYSICAL REVIEW D, 1992, 45 (10) :3584-3590
[4]  
CARLIP S, UNPUB
[5]   TEICHMULLER MOTION OF (2+1)-DIMENSIONAL GRAVITY WITH THE COSMOLOGICAL CONSTANT [J].
FUJIWARA, Y ;
SODA, J .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (04) :733-748
[6]   (2+1)-DIMENSIONAL PURE GRAVITY FOR AN ARBITRARY CLOSED INITIAL SURFACE [J].
HOSOYA, A ;
NAKAO, K .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (02) :163-176
[7]   (2+1)-DIMENSIONAL QUANTUM-GRAVITY - CASE OF TORUS UNIVERSE [J].
HOSOYA, A ;
NAKAO, K .
PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (04) :739-748
[8]   REDUCTION OF THE EINSTEIN EQUATIONS IN 2+1 DIMENSIONS TO A HAMILTONIAN SYSTEM OVER TEICHMULLER SPACE [J].
MONCRIEF, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) :2907-2914
[9]   2+1 QUANTUM-GRAVITY [J].
NELSON, JE ;
REGGE, T .
PHYSICS LETTERS B, 1991, 272 (3-4) :213-216
[10]   2+1 GRAVITY FOR GENUS GREATER-THAN 1 [J].
NELSON, JE ;
REGGE, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (01) :211-223