WOLFF-TYPE EMBEDDING ALGORITHMS FOR GENERAL NONLINEAR SIGMA-MODELS

被引:57
作者
CARACCIOLO, S
EDWARDS, RG
PELISSETTO, A
SOKAL, AD
机构
[1] INFN, I-56100 PISA, ITALY
[2] FLORIDA STATE UNIV, SUPERCOMP COMPUTAT RES INST, TALLAHASSEE, FL 32306 USA
[3] UNIV PISA, DIPARTIMENTO FIS, I-56100 PISA, ITALY
[4] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(93)90044-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a class of Monte Carlo algorithms for the nonlinear sigma-model, based on a Wolff-type embedding of Ising spins into the target manifold M. We argue heuristically that, at least for an asymptotically free model, such an algorithm can have a dynamic critical exponent z << 2 only if the embedding is based on an (involutive) isometry of M whose fixed-point manifold has codimension 1. Such an isometry exists only if the manifold is a discrete quotient of a product of spheres. Numerical simulations of the idealized codimension-2 algorithm for the two-dimensional O(4)-symmetric sigma-model yield z(int,M2) = 1.5 +/- 0.5 (subjective 68% confidence interval), in agreement with our heuristic argument.
引用
收藏
页码:475 / 541
页数:67
相关论文
共 111 条
  • [1] Abraham R., 1967, TRANSVERSAL MAPPINGS
  • [2] ANDERSON TW, 1971, STATISTICAL ANAL TIM
  • [3] COMPARISON OF CLUSTER ALGORITHMS FOR 2-DIMENSIONAL POTTS MODELS
    BAILLIE, CF
    CODDINGTON, PD
    [J]. PHYSICAL REVIEW B, 1991, 43 (13): : 10617 - 10621
  • [4] NOTE ON WIGNERS THEOREM ON SYMMETRY OPERATIONS
    BARGMANN, V
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) : 862 - &
  • [5] LANGEVIN SIMULATIONS OF LATTICE FIELD-THEORIES
    BATROUNI, GG
    KATZ, GR
    KRONFELD, AS
    LEPAGE, GP
    SVETITSKY, B
    WILSON, KG
    [J]. PHYSICAL REVIEW D, 1985, 32 (10): : 2736 - 2747
  • [6] CRITICAL ACCELERATION OF LATTICE GAUGE SIMULATIONS
    BENAV, R
    KANDEL, D
    KATZNELSON, E
    LAUWERS, PG
    SOLOMON, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (1-2) : 125 - 139
  • [7] Borel A., 1955, COMMENT MATH HELV, V29, P27
  • [8] LOWER CRITICAL DIMENSION OF ISING SPIN-GLASSES - A NUMERICAL STUDY
    BRAY, AJ
    MOORE, MA
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (18): : L463 - L468
  • [9] GENERALIZED NON-LINEAR SIGMA-MODELS WITH GAUGE-INVARIANCE
    BREZIN, E
    HIKAMI, S
    ZINNJUSTIN, J
    [J]. NUCLEAR PHYSICS B, 1980, 165 (03) : 528 - 544
  • [10] RANDOM SURFACE DYNAMICS FOR Z2 GAUGE-THEORY
    BROWER, RC
    HUANG, SZ
    [J]. PHYSICAL REVIEW D, 1990, 41 (02): : 708 - 711