FUZZY EQUIVALENCE AND THE RESULTING TOPOLOGY

被引:3
作者
PATRONIS, T [1 ]
STAVRINOS, P [1 ]
机构
[1] UNIV ATHENS,DEPT MATH,ATHENS,GREECE
关键词
INDIFFERENCE RELATION; FUZZY EQUIVALENCE; TOPOLOGY; METRIC SPACE; DISTANCE; TRIANGLE INEQUALITY; TRANSITIVITY; FUZZY TRANSITIVITY; NON-TRANSITIVITY; INDISTINGUISHABILITY;
D O I
10.1016/0165-0114(92)90136-R
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we show how a topology can be generated by a fuzzy binary relation of indifference, i.e. a fuzzy equivalence relation, on a set of objects. This construction generalizes the classical construction of the topology of metric spaces, thus showing that the idea of fuzziness is already present in classical mathematical objects. An application related to Poincare's conception of continuum is also given.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 13 条
[1]  
Chevallard Y., 1982, RECHERCHES DIDACTIQU, V3, P159
[2]   BOOLEAN FUZZY-SETS [J].
DROSSOS, CA ;
MARKAKIS, G .
FUZZY SETS AND SYSTEMS, 1992, 46 (01) :81-95
[3]  
Frechet M.M., 1906, RENDICONTI CIRCOLO M, V22, P1, DOI [10.1007/BF03018603, DOI 10.1007/BF03018603]
[4]  
Fritsche R., 1971, FUND MATH, V72, P7
[5]   Statistical metrics [J].
Menger, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1942, 28 :535-537
[7]   STRUCTURE OF FUZZY BINARY RELATIONS [J].
OVCHINNIKOV, SV .
FUZZY SETS AND SYSTEMS, 1981, 6 (02) :169-195
[8]  
Poincare H., 1905, SCI HYPOTHESIS
[9]  
Schweizer B., 1961, PUBL MATH-PARIS, V8, P169
[10]  
Schweizer B., 1960, PAC J MATH, V10, P314, DOI DOI 10.2140/PJM.1960.10.313