We studied inhibition of N-type Ca2+ channels in rat superior cervical ganglion neurons by substance P (SP) and somatostatin-14 (Som). In whole-cell clamp, 70 of 82 acutely dissociated neurons showed inhibition (mean 37%) by 500 nM SP, and 54 of 61 showed inhibition by 240 nM Som (mean 57%). Pertussis toxin (PTX) blocked Som but not SP inhibition; intracellular dialysis with 2 mM GDP-beta-S attenuated inhibition with either peptide. Inhibition was voltage dependent with Som but not with SP. Neurokinin A (1 muM) or B was without effect, implicating NK1 tachykinin receptors. In cell-attached patches with bath-applied drugs, to test for a diffusible messenger, inhibition by SP or Som was only 8%. Thus, SP signaling is voltage independent and PTX insensitive; Som inhibition is voltage dependent and PTX sensitive; and both are membrane delimited.