AN ANALYSIS OF NEDELEC METHOD FOR THE SPATIAL DISCRETIZATION OF MAXWELL EQUATIONS

被引:68
作者
MONK, P [1 ]
机构
[1] UNIV DELAWARE, DEPT MATH SCI, NEWARK, DE 19718 USA
基金
美国国家科学基金会;
关键词
MAXWELL EQUATIONS; EDGE FINITE ELEMENTS; ERROR ESTIMATES;
D O I
10.1016/0377-0427(93)90093-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1980 Nedelec developed a family of curl- and divergence-conforming finite elements in R3. He proposed the use of these elements to discretize the time-dependent Maxwell equations, noting that the elements have the advantage that the discrete magnetic displacement can be made exactly divergence-free. In this paper, we shall analyze a slight generalization of Nedelec's scheme and prove essentially optimal-order convergence estimates in a variety of situations. We also demonstrate that the Nedelec method can be superconvergent at certain special points and we relate the method to Yee's finite-difference scheme. A by-product of our analysis will be a convergence proof for Yee's method.
引用
收藏
页码:101 / 121
页数:21
相关论文
共 25 条
[1]   A RATIONALE FOR EDGE-ELEMENTS IN 3-D FIELDS COMPUTATIONS [J].
BOSSAVIT, A .
IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) :74-79
[2]  
Ciarlet P. G., 1974, MATH ASPECTS FINITE, p[125, 260], DOI DOI 10.1016/B978-0-12-208350-1.50009-1
[3]  
Ciarlet P. G., 1978, STUD MATH APPL, V4
[4]   DISCRETE VECTOR POTENTIAL REPRESENTATION OF A DIVERGENCE-FREE VECTOR FIELD IN 3-DIMENSIONAL DOMAINS - NUMERICAL-ANALYSIS OF A MODEL PROBLEM [J].
DUBOIS, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (05) :1103-1141
[5]  
DUVAUT G, 1976, INEQUALITIES MECHANI
[6]  
GEVECI T, 1988, ESAIM-MATH MODEL NUM, V22, P243
[8]  
GIRAULT V, 1990, LECT NOTES MATH, V1431, P201
[9]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[10]  
KIKUCHI F, 1987, COMPUT METHOD APPL M, V64, P509, DOI 10.1016/0045-7825(87)90053-3