OBTAINING ERROR-ESTIMATES FOR OPTIMALLY CONSTRAINED INCOMPRESSIBLE FINITE-ELEMENTS

被引:13
作者
MALKUS, DS
OLSEN, ET
机构
关键词
D O I
10.1016/0045-7825(84)90160-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:331 / 353
页数:23
相关论文
共 22 条
[1]  
BABUSKA I, 1972, MATH F FINITE ELEMEN
[2]  
BERCOVIER M, 1978, RAIRO-ANAL NUMER-NUM, V12, P211
[3]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[4]   ON NEWTONIAN AND NON-NEWTONIAN FLOW IN COMPLEX GEOMETRIES [J].
COCHRANE, T ;
WALTERS, K ;
WEBSTER, MF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 301 (1460) :163-+
[5]  
ENGELMAN M, 1981, INT J NUMER METHS FL, V2, P25
[7]   FINITE-ELEMENT ANALYSIS OF INCOMPRESSIBLE VISCOUS FLOWS BY THE PENALTY FUNCTION FORMULATION [J].
HUGHES, TJR ;
LIU, WK ;
BROOKS, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (01) :1-60
[8]   ANALYSIS OF SOME MIXED FINITE-ELEMENT METHODS RELATED TO REDUCED INTEGRATION [J].
JOHNSON, C ;
PITKARANTA, J .
MATHEMATICS OF COMPUTATION, 1982, 38 (158) :375-400
[9]   NEWTONIAN LIQUID HOLE PRESSURES AT SMALL REYNOLDS-NUMBERS [J].
LODGE, AS .
JOURNAL OF RHEOLOGY, 1983, 27 (05) :497-501