SUBSITE BINDING IN AN RNASE - STRUCTURE OF A BARNASE TETRANUCLEOTIDE COMPLEX AT 1.76-ANGSTROM RESOLUTION

被引:84
作者
BUCKLE, AM [1 ]
FERSHT, AR [1 ]
机构
[1] MRC CTR,CAMBRIDGE CTR PROT ENGN,CAMBRIDGE CB2 2QH,CAMBS,ENGLAND
关键词
D O I
10.1021/bi00173a005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A set of subsites in barnase has been proposed from kinetic studies. A specific substrate analog, the tetradeoxynucleotide, CGAC, has been designed from this information. We report the crystal structure of its complex with barnase at 1.76-Angstrom resolution. The structure was solved by molecular replacement from a model of free barnase and refined to a crystallographic R factor of 19.0%. The stoichiometry of the asymmetric unit dimeric complex is [barnase:d(CGAC)](2), with 2-fold noncrystallographic symmetry. Each barnase molecule binds one oligonucleotide, whereby the recognition site is occupied by guanine, and all three phosphate groups of the nucleotide make electrostatic interactions with basic residues in a strongly electropositive region at the bottom of the active site. The active-site His102 packs against the adenine base of the nucleotide in an almost identical manner to the guanine base in the barnase-d(GpC) complex and defines a possible subsite in the Michaelis complex. The overall protein structure is unchanged on forming the complex with d(CGAC), but there are small differences in the active site and in crystal packing regions. The protein coordinates will be useful for theoretical calculations since some disorder induced by packing constraints in the crystals of the free enzyme are absent in the crystals of the complex. The interface of the dimer is formed by a His102-adenine-adenine-His102 face-to-face ring stack directly on the 2-fold axis. The edge of the adenine-adenine stack packs closely onto the face of a 3'-cytosine-3'-cytosine interaction, which has a ''base-pair''-like conformation but too great a separation of the bases to form hydrogen bonds. This unusual arrangement is the major stabilizing interaction within the dimeric complex, since there are no direct protein-protein interactions. Using the structure of the complex as a starting point for model building, the nature of the enzyme-substrate and enzyme-transition state complexes is investigated.
引用
收藏
页码:1644 / 1653
页数:10
相关论文
共 40 条
[1]  
AIBER T, 1983, MOBILITY FUNCTION PR, P4
[2]   CRYSTAL-STRUCTURE OF A BARNASE-D(GPC) COMPLEX AT 1.9-A RESOLUTION [J].
BAUDET, S ;
JANIN, J .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 219 (01) :123-132
[3]  
BLACKBURN GM, 1990, NUCLEIC ACIDS CHEM B
[4]  
BRUNGER AT, 1992, XPLOR MANUAL VERSION
[5]   CRYSTAL STRUCTURAL-ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE [J].
BUCKLE, AM ;
HENRICK, K ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :847-860
[6]  
CAMERON AD, 1992, THESIS YORK U HESLIN
[7]   BARNASE HAS SUBSITES THAT GIVE RISE TO LARGE RATE ENHANCEMENTS [J].
DAY, AG ;
PARSONAGE, D ;
EBEL, S ;
BROWN, T ;
FERSHT, AR .
BIOCHEMISTRY, 1992, 31 (28) :6390-6395
[8]   STRUCTURE OF A B-DNA DODECAMER .2. INFLUENCE OF BASE SEQUENCE ON HELIX STRUCTURE [J].
DICKERSON, RE ;
DREW, HR .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 149 (04) :761-786
[9]  
DING JP, 1991, J BIOL CHEM, V266, P15128
[10]   A TETRAMERIC DNA-STRUCTURE WITH PROTONATED CYTOSINE.CYTOSINE BASE-PAIRS [J].
GEHRING, K ;
LEROY, JL ;
GUERON, M .
NATURE, 1993, 363 (6429) :561-565