STRESS-INDUCED DEGRADATION OF THE PHOTOSYNTHETIC APPARATUS IS ACCOMPANIED BY CHANGES IN THYLAKOID PROTEIN-TURNOVER AND PHOSPHORYLATION

被引:32
作者
DANNEHL, H [1 ]
HERBIK, A [1 ]
GODDE, D [1 ]
机构
[1] RUHR UNIV BOCHUM, LEHRSTUHL BIOCHEM PFLANZEN, D-44780 BOCHUM, GERMANY
关键词
CHLOROSIS; D1 PROTEIN TURNOVER; MINERAL STRESS; PHOSPHORYLATION; PHOTOINHIBITION; PSII;
D O I
10.1034/j.1399-3054.1995.930125.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Development of chlorosis and loss of PSII were compared in young spinach plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll could be detected already after the first week of deficiency and preceded any permanent functional inhibition of PSII as detected by changes in the chlorophyll fluorescence parameter F-v/F-m. A substantial decrease in F-v/F-m was observed only after the second week of deficiency. After 4 weeks, the plants had lost about 70% of their original chlorophyll content, but fluorescence data indicated that 80% of the existing PSII centers were still capable of initiating photosynthetic electron transport. The degradation of the photosynthetic apparatus without loss of PSII activity was due to changes in protein turnover, especially of the PSII D1 reaction center protein. Already by day 7 of deficiency, a 1.4-fold increase in D1 protein synthesis was observed measured as incorporation of C-14-leucine. Immunological determination by western-blotting did not reveal a change in D1 protein content. Thus, D1 protein was also. degraded more rapidly. The increased turnover was high enough to prevent any loss or inhibition of PSII. After 3 weeks, D1 protein synthesis on a chlorophyll basis was further increased by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%. Immunological determination revealed that together with the D1 protein also other polypeptides of PSII became degraded. This process prevented a large accumulation of photo-inactivated PSII centers. However, it initiated the breakdown of the other thylakoid proteins, especially of LHCII, resulting in the observed chlorosis. Together with the change in protein turnover and stability, a characteristic change in thylakoid protein phosphorylation was observed. In the deficient plants steady stale phosphorylation of both LHCII and PSII proteins was increased in the dark. In the light phosphorylation of PSII proteins was stimulated and after 3 weeks of deficiency was even higher in the deficient leaves than in the control plants. In contrast, the phosphorylation level of LHCII decreased in the light and could hardly be detected after 3 weeks of deficiency. Phosphorylation of the reaction center polypeptides presumably increased their stability against proteolytic attack, whereas phosphorylated LHCII seems to be the substrate for proteolysis.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 37 条
[1]   REDOX CONTROL OF GENE-EXPRESSION AND THE FUNCTION OF CHLOROPLAST GENOMES - AN HYPOTHESIS [J].
ALLEN, JF .
PHOTOSYNTHESIS RESEARCH, 1993, 36 (02) :95-102
[2]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[3]   DIFFERENTIAL PHOSPHORYLATION OF THE LIGHT-HARVESTING CHLOROPHYLL PROTEIN COMPLEX IN APPRESSED AND NON-APPRESSED REGIONS OF THE THYLAKOID MEMBRANE [J].
ANDERSSON, B ;
AKERLUND, HE ;
JERGIL, B ;
LARSSON, C .
FEBS LETTERS, 1982, 149 (02) :181-185
[4]   PHOTOINHIBITION AND D1 PROTEIN-DEGRADATION IN PEAS ACCLIMATED TO DIFFERENT GROWTH IRRADIANCES [J].
ARO, EM ;
MCCAFFERY, S ;
ANDERSON, JM .
PLANT PHYSIOLOGY, 1993, 103 (03) :835-843
[5]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[6]   ATP AND LIGHT REGULATE D1-PROTEIN MODIFICATION AND DEGRADATION ROLE OF D1-STAR IN PHOTOINHIBITION [J].
ARO, EM ;
KETTUNEN, R ;
TYYSTJARVI, E .
FEBS LETTERS, 1992, 297 (1-2) :29-33
[7]   A HIGHLY RESOLVED, OXYGEN-EVOLVING PHOTOSYSTEM-II PREPARATION FROM SPINACH THYLAKOID MEMBRANES - ELECTRON-PARAMAGNETIC-RES AND ELECTRON-TRANSPORT PROPERTIES [J].
BERTHOLD, DA ;
BABCOCK, GT ;
YOCUM, CF .
FEBS LETTERS, 1981, 134 (02) :231-234
[8]  
CALLAHAN FE, 1990, J BIOL CHEM, V265, P15357
[9]   PHOTOPROTECTION AND OTHER RESPONSES OF PLANTS TO HIGH LIGHT STRESS [J].
DEMMIGADAMS, B ;
ADAMS, WW .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :599-626
[10]   CARBON METABOLISM IN SPINACH LEAVES AS AFFECTED BY LEAF AGE AND PHOSPHORUS AND SULFUR NUTRITION [J].
DIETZ, KJ ;
HEILOS, L .
PLANT PHYSIOLOGY, 1990, 93 (03) :1219-1225