A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution

被引:325
作者
Babuska, I
Ihlenburg, F
Paik, ET
Sauter, SA
机构
[1] Institute of Physical Science and Technology, University of Maryland, College Park
关键词
Finite element method;
D O I
10.1016/0045-7825(95)00890-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When using the Galerkin FEM for solving the Helmholtz equation in two dimensions, the error of the corresponding solution differs substantially from the error of the best approximation, and this effect increases with higher wave number k. In this paper we will design a Generalized Finite Element Method (GFEM) for the Helmholtz equation such that the pollution effect is minimal.
引用
收藏
页码:325 / 359
页数:35
相关论文
共 9 条
[1]   GENERALIZED FINITE-ELEMENT METHODS - THEIR PERFORMANCE AND THEIR RELATION TO MIXED METHODS [J].
BABUSKA, I ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (03) :510-536
[2]  
BABUSKA IM, 1994, BN1172U MAR TECHN RE
[3]  
Hackbusch W, 1992, ELLIPTIC DIFFERENTIA
[4]   FINITE-ELEMENT METHODS FOR THE HELMHOLTZ-EQUATION IN AN EXTERIOR DOMAIN - MODEL PROBLEMS [J].
HARARI, I ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 87 (01) :59-96
[5]   FINITE-ELEMENT SOLUTION OF THE HELMHOLTZ-EQUATION WITH HIGH WAVE-NUMBER .1. THE H-VERSION OF THE FEM [J].
IHLENBURG, F ;
BABUSKA, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (09) :9-37
[6]  
IHLENBURG F, IN PRESS SIAM J NUME
[7]  
IHLENBURG F, IN PRESS INT J NUMER
[8]   EXACT NON-REFLECTING BOUNDARY-CONDITIONS [J].
KELLER, JB ;
GIVOLI, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :172-192
[9]   A GALERKIN LEAST-SQUARES FINITE-ELEMENT METHOD FOR THE 2-DIMENSIONAL HELMHOLTZ-EQUATION [J].
THOMPSON, LL ;
PINSKY, PM .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (03) :371-397