FRACTIONAL KINETIC-EQUATION FOR HAMILTONIAN CHAOS

被引:323
作者
ZASLAVSKY, GM [1 ]
机构
[1] NYU, DEPT PHYS, NEW YORK, NY 10012 USA
关键词
D O I
10.1016/0167-2789(94)90254-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hamiltonian chaotic dynamics of particles (or passive particles in fluids) can be described by a fractional generalization of the Fokker-Planck-Kolmogorov equation (FFPK) which is defined by two fractional critical exponents (alpha, beta) responsible for the space and time derivatives of the distribution function correspondingly. A renormalization method has been proposed to determine (alpha, beta) from the first principles (i.e. from the Hamiltonian). The anomalous transport exponent mu is derived as mu = beta/alpha or mu = beta/2 alpha for the first order mean displacement in self-similar transport.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 38 条
  • [1] Afanasiev VV, 1991, CHAOS, V1
  • [2] CARY JR, 1991, PHYS REV A, V24, P2664
  • [3] ANOMALOUS TRANSPORT OF STREAMLINES DUE TO THEIR CHAOS AND THEIR SPATIAL TOPOLOGY
    CHERNIKOV, AA
    PETROVICHEV, BA
    ROGALSKY, AV
    SAGDEEV, RZ
    ZASLAVSKY, GM
    [J]. PHYSICS LETTERS A, 1990, 144 (03) : 127 - 133
  • [4] Chirikov B. V., 1991, Chaos, Solitons and Fractals, V1, P79, DOI 10.1016/0960-0779(91)90057-G
  • [5] UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
    CHIRIKOV, BV
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05): : 263 - 379
  • [6] CHIRIKOV BV, 1984, PHYSICA D, V13, P394
  • [7] RESONANCES AND DIFFUSION IN PERIODIC HAMILTONIAN MAPS
    DANA, I
    MURRAY, NW
    PERCIVAL, IC
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (03) : 233 - 236
  • [8] ALGEBRAIC ESCAPE IN HIGHER DIMENSIONAL HAMILTONIAN-SYSTEMS
    DING, MZ
    BOUNTIS, T
    OTT, E
    [J]. PHYSICS LETTERS A, 1990, 151 (08) : 395 - 400
  • [9] DRACOS T, 1983, NEW APPROACHES CONCE, P165
  • [10] STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS
    ESCANDE, DF
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4): : 165 - 261