NEW LOWER AND UPPER-BOUNDS FOR ONLINE SCHEDULING

被引:58
作者
CHEN, B
VANVLIET, A
WOEGINGER, GJ
机构
[1] ERASMUS UNIV ROTTERDAM,INST ECONOMETR,3000 DR ROTTERDAM,NETHERLANDS
[2] GRAZ TECH UNIV,INST THEORET COMP SCI,GRAZ,AUSTRIA
关键词
SCHEDULING; ONLINE ALGORITHMS; WORST-CASE ANALYSIS;
D O I
10.1016/0167-6377(94)90071-X
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the problem of on-line scheduling a set of independent jobs on m parallel and identical machines with the objective of minimizing the overall finishing time. In this note, we are mainly interested in the cases where m is small. We derive results on the inevitable worst-case deviations from the optimum as encountered by any on-line algorithm. For m = 2 and m = 3, Graham's List Scheduling heuristic is known to be best possible. For m = 4, we will derive almost matching upper and lower bounds on the best possible worst-case guarantee for any on-line algorithm.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 7 条
[1]  
BARTAL Y, 1992, 24TH P ACM S THEOR C, P51
[2]  
CHEN B, 1993, 9374A ER U EC I REP
[3]  
CHEN B, 1993, 9325A ER U EC I REP
[4]  
Faigle U., 1989, Acta Cybernetica, V9, P107
[5]   AN ONLINE SCHEDULING HEURISTIC WITH BETTER WORST CASE RATIO THAN GRAHAM LIST SCHEDULING [J].
GALAMBOS, G ;
WOEGINGER, GJ .
SIAM JOURNAL ON COMPUTING, 1993, 22 (02) :349-355
[6]  
Garey M. R., 1979, COMPUTERS INTRACTABI
[7]   BOUNDS FOR CERTAIN MULTIPROCESSING ANOMALIES [J].
GRAHAM, RL .
BELL SYSTEM TECHNICAL JOURNAL, 1966, 45 (09) :1563-+