STABILITY OF A FBTCS SCHEME APPLIED TO THE PROPAGATION OF SHALLOW-WATER INERTIA-GRAVITY WAVES ON VARIOUS SPACE GRIDS

被引:27
作者
BECKERS, JM [1 ]
DELEERSNIJDER, E [1 ]
机构
[1] UNIV CATHOLIQUE LOUVAIN,G LEMAITRE INST ASTRON & GEOPHYS,B-1348 LOUVAIN,BELGIUM
关键词
D O I
10.1006/jcph.1993.1166
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The equations governing the propagation of inertia-gravity waves in geophysical fluid flows are discretized on the A, B, C, and D grids according to the classical forward-backward on time and centered on space (FBTCS) numerical scheme. The von Neumann stability analysis is performed and it is shown that the stability condition of the inertia-gravity waves scheme is more restrictive, at least by a factor of 2, than that concerning pure gravity waves, whatever the magnitude of the Coriolis parameter. Finally, the general necessary and sufficient stability condition is derived for the A, B and C grids, while, on the D grid, the stability condition has been obtained only in particular cases. © 1993 Academic Press, Inc.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 26 条
[1]  
Arakawa A., 1977, METHODS COMPUTATIONA, V17, P173, DOI DOI 10.1016/B978-0-12-460817-7.50009-4
[2]  
BATTEEN ML, 1981, TELLUS, V33, P387, DOI 10.1111/j.2153-3490.1981.tb01761.x
[3]   ANALYTICAL LINEAR NUMERICAL STABILITY CONDITIONS FOR AN ANISOTROPIC 3-DIMENSIONAL ADVECTION-DIFFUSION EQUATION [J].
BECKERS, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :701-713
[4]   GEOSTROPHIC ADJUSTMENT [J].
BLUMEN, W .
REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, 1972, 10 (02) :485-&
[5]  
CAHN A, 1945, J METEOROL, V2, P213
[6]  
HSIEH, 1984, J PHYS OCEANOGR, V8, P424
[7]  
JANJIC ZI, 1974, MON WEATHER REV, V102, P319, DOI 10.1175/1520-0493(1974)102<0319:ASCDSF>2.0.CO
[8]  
2
[9]  
KASAHARA A, 1965, MON WEA REV, V93, P27
[10]  
Leblond PH., 1978, WAVES OCEAN, V20