CONFORMAL SYMMETRY AND THE SPECTRUM OF ANOMALOUS DIMENSIONS IN THE N-VECTOR MODEL IN 4-EPSILON DIMENSIONS

被引:32
作者
KEHREIN, SK [1 ]
WEGNER, FJ [1 ]
PISMAK, YM [1 ]
机构
[1] STATE UNIV ST PETERSBURG, DEPT THEORET PHYS, 198904 ST PETERSBURG, RUSSIA
关键词
D O I
10.1016/0550-3213(93)90124-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The subject of this paper is to study the critical N-vector model in 4-epsilon dimensions in one-loop order. We analyse the spectrum of anomalous dimensions of composite operators with an arbitrary number of fields and gradients. For composite operators with three elementary fields and gradients we work out the complete spectrum of anomalous dimensions, thus extending the old solution of Wilson and Kogut for two fields and gradients. In the general case we prove some properties of the spectrum, in particular a lower limit 0 + O(epsilon2). Thus one-loop contributions generally improve the stability of the nontrivial fixed point in contrast to some 2 + epsilon expansions. Furthermore we explicitly find conformal invariance at the nontrivial fixed point.
引用
收藏
页码:669 / 692
页数:24
相关论文
共 17 条
[1]  
CASTILLA GE, 1992, PREPRINT U CALIFORNI
[2]  
ERDELYL A, 1953, HIGHER TRANSCENDENTA, V2
[3]  
KRAVTSOV VE, 1988, ZH EKSP TEOR FIZ+, V94, P255
[4]   ANOMALOUS DIMENSIONS OF HIGH-GRADIENT OPERATORS IN THE EXTENDED NONLINEAR SIGMA-MODEL AND DISTRIBUTION OF MESOSCOPIC FLUCTUATIONS [J].
KRAVTSOV, VE ;
LERNER, IV ;
YUDSON, VI .
PHYSICS LETTERS A, 1989, 134 (04) :245-252
[5]  
KRAVTSOV VE, 1988, ZH EKSP TEOR FIZ, V67, P1441
[6]   GLOBAL CONFORMAL INVARIANCE IN QUANTUM FIELD-THEORY [J].
LUSCHER, M ;
MACK, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 41 (03) :203-234
[7]   CONVERGENCE OF OPERATOR PRODUCT EXPANSIONS ON VACUUM IN CONFORMAL INVARIANT QUANTUM FIELD-THEORY [J].
MACK, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (02) :155-184
[8]  
MALL H, IN PRESS NUCL PHYS B
[9]   CONFORMAL COVARIANCE IN FRAMEWORK OF WILSONS RENORMALIZATION GROUP APPROACH [J].
SCHAFER, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03) :377-395
[10]   HARMONIC PERTURBATIONS OF GENERALIZED HEISENBERG SPIN SYSTEMS [J].
WALLACE, DJ ;
ZIA, RKP .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (06) :839-843