ON THE CORRECT CONVERGENCE OF COMPLEX LANGEVIN SIMULATIONS FOR POLYNOMIAL ACTIONS

被引:11
作者
GAUSTERER, H
机构
[1] Inst. fur Theor. Phys., Graz Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 04期
关键词
D O I
10.1088/0305-4470/27/4/025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There are problems in physics and particularly in field theory which are defined by complex-valued weight functions e(-S) where S is a polynomial action S : R(n) --> C. The conditions under which a convergent complex Langevin calculation correctly simulates such integrals are discussed. All conditions on the process which are used to prove proper convergence are defined in the stationary limit.
引用
收藏
页码:1325 / 1330
页数:6
相关论文
共 12 条
[1]   NUMERICAL PROBLEMS IN APPLYING THE LANGEVIN EQUATION TO COMPLEX EFFECTIVE ACTIONS [J].
AMBJORN, J ;
YANG, SK .
PHYSICS LETTERS B, 1985, 165 (1-3) :140-146
[2]  
Arnold L., 1974, STOCHASTIC DIFFERENT
[3]  
Gardiner C. W., 1983, HDB STOCHASTIC METHO
[4]  
GAUSTERER H, 1973, IN PRESS J STAT PHYS, V73
[5]   CONVERGENCE OF THE LANGEVIN SIMULATION FOR COMPLEX GAUSSIAN INTEGRALS [J].
HAYMAKER, RW ;
PENG, YC .
PHYSICAL REVIEW D, 1990, 41 (04) :1269-1275
[6]  
Klauder J.R., 1983, RECENT DEV HIGH ENER, P351
[7]   SPECTRUM OF CERTAIN NON-SELF-ADJOINT OPERATORS AND SOLUTIONS OF LANGEVIN-EQUATIONS WITH COMPLEX DRIFT [J].
KLAUDER, JR ;
PETERSEN, WP .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) :53-72
[8]  
LEE S, IN PRESS NUCL PHYS B
[9]  
LEE S, 1993, THESIS U FLORIDA GAI
[10]   THE ROLE OF A KERNEL IN COMPLEX LANGEVIN SYSTEMS [J].
OKAMOTO, H ;
OKANO, K ;
SCHULKE, L ;
TANAKA, S .
NUCLEAR PHYSICS B, 1989, 324 (03) :684-714