FLUX DIFFERENCE SPLITTING FOR 1D OPEN CHANNEL FLOW EQUATIONS

被引:72
作者
ALCRUDO, F
GARCIANAVARRO, P
SAVIRON, JM
机构
[1] Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza
关键词
MATHEMATICAL MODELING; SHOCK CAPTURING; UPWIND SCHEMES; FLUX DIFFERENCE SPLITTING; OPEN CHANNEL FLOW;
D O I
10.1002/fld.1650140902
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An upwind finite difference scheme based on flux difference splitting is presented for the solution of the equations governing unsteady open channel hydraulics. An approximate Jacobian needed for splitting the flux differences is defined that satisfies the conditions required to construct a first-order upwind conservative discretization of the equations. Added limited second-order corrections make the resulting scheme robust and accurate for the computation of all regimes of open channel flow. Some numerical results and comparisons with other classical schemes under exacting conditions are presented.
引用
收藏
页码:1009 / 1018
页数:10
相关论文
共 10 条
[1]  
Cunge J., 1980, PRACTICAL ASPECTS CO
[2]   APPROXIMATE RIEMANN SOLUTIONS OF THE SHALLOW-WATER EQUATIONS [J].
GLAISTER, P .
JOURNAL OF HYDRAULIC RESEARCH, 1988, 26 (03) :293-306
[3]   SELF-ADJUSTING GRID METHODS FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
HYMAN, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 50 (02) :235-269
[4]  
Hirsch C., 1990, NUMERICAL COMPUTATIO, V2
[5]  
Roe P. L., 1984, COMPUTER METHODS APP, P499
[6]   Approximate Riemann solvers, parameter vectors, and difference schemes (Reprinted from the Journal of Computational Physics, vol 43, pg 357-372, 1981) [J].
Roe, PL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :250-258
[7]  
ROE PL, 1989, LECTURE SERIES CFD
[8]  
Stoker J.J., 2011, WATER WAVES MATH THE, V36, DOI DOI 10.1002/9781118033159
[9]  
SWEBY PK, 1982, MODIFICATION ROES SC
[10]  
SWEBY PK, 1984, SIAM J NUMER ANAL, V21