DNA-BINDING OF CPF1 IS REQUIRED FOR OPTIMAL CENTROMERE FUNCTION BUT NOT FOR MAINTAINING METHIONINE PROTOTROPHY IN YEAST

被引:45
作者
MELLOR, J [1 ]
RATHJEN, J [1 ]
JIANG, W [1 ]
DOWELL, SJ [1 ]
机构
[1] INST MICROBIOL & MOLEC BIOL, W-6300 GIESSEN, GERMANY
基金
英国惠康基金;
关键词
D O I
10.1093/nar/19.11.2961
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The centromere and promoter factor 1 (CPF1) binds specifically in vitro and in vivo to an octanucleotide (RTCACRTG). This sequence is found in the centromere DNA element I (CDEI) of yeast centromeres and upstream from a number of transcription units including MET25, GAL2 and TRP1. Inactivation of the CPF1 gene results in three phenotypes; slow growth, a partial loss of centromere function and methionine auxotrophy. These phenotypes correlate well with the known binding sites for CPF1 and have led to the suggestion that CPF1 functions as a kinetochore protein at centromeres and as a transcriptional activator at promoters such as MET25. By analysing transcription from the MET25, GAL2, and TRP1 genes in cpf1 strains, we demonstrate that CPF1 plays no direct role in their transcriptional regulation. Further evidence in support of this comes from the analysis of point mutations in the basic region of CPF1 that affect DNA binding. A strain expressing a non-DNA bound form of CPF1 is phenotypically Met+, shows normal growth rate but has sub-optimal centromere function. We conclude that a DNA-bound form of CPF1 is required for the kinetochore function but not for maintaining methionine prototrophy.
引用
收藏
页码:2961 / 2969
页数:9
相关论文
共 50 条
[1]  
BAKER RE, 1989, J BIOL CHEM, V264, P10843
[2]   ISOLATION OF THE GENE ENCODING THE SACCHAROMYCES-CEREVISIAE CENTROMERE-BINDING PROTEIN CP1 [J].
BAKER, RE ;
MASISON, DC .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (06) :2458-2467
[3]   TFE3 - A HELIX LOOP HELIX PROTEIN THAT ACTIVATES TRANSCRIPTION THROUGH THE IMMUNOGLOBULIN ENHANCER MU-E3 MOTIF [J].
BECKMANN, H ;
SU, LK ;
KADESCH, T .
GENES & DEVELOPMENT, 1990, 4 (02) :167-179
[4]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[5]   ISOLATION OF A SACCHAROMYCES-CEREVISIAE CENTROMERE DNA-BINDING PROTEIN, ITS HUMAN HOMOLOG, AND ITS POSSIBLE ROLE AS A TRANSCRIPTION FACTOR [J].
BRAM, RJ ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :403-409
[6]   A GAL FAMILY OF UPSTREAM ACTIVATING SEQUENCES IN YEAST - ROLES IN BOTH INDUCTION AND REPRESSION OF TRANSCRIPTION [J].
BRAM, RJ ;
LUE, NF ;
KORNBERG, RD .
EMBO JOURNAL, 1986, 5 (03) :603-608
[7]   A CONSENSUS TRANSCRIPTION TERMINATION SEQUENCE IN THE PROMOTER REGION IS NECESSARY FOR EFFICIENT GENE-EXPRESSION OF THE TRP1 GENE OF SACCHAROMYCES-CEREVISIAE [J].
BRAUS, G ;
PARAVICINI, G ;
HUTTER, R .
MOLECULAR & GENERAL GENETICS, 1988, 212 (03) :495-504
[8]   PURIFICATION OF A YEAST CENTROMERE-BINDING PROTEIN THAT IS ABLE TO DISTINGUISH SINGLE BASE-PAIR MUTATIONS IN ITS RECOGNITION SITE [J].
CAI, MJ ;
DAVIS, RW .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2544-2550
[9]   YEAST CENTROMERE BINDING PROTEIN-CBF1, OF THE HELIX-LOOP-HELIX PROTEIN FAMILY, IS REQUIRED FOR CHROMOSOME STABILITY AND METHIONINE PROTOTROPHY [J].
CAI, MJ ;
DAVIS, RW .
CELL, 1990, 61 (03) :437-446
[10]  
CARBON J, 1984, J CELL SCI, P43