ON THE SUPERLINEAR CONVERGENCE OF A TRUST REGION ALGORITHM FOR NONSMOOTH OPTIMIZATION

被引:75
作者
YUAN, Y
机构
[1] Univ of Cambridge, Dep of Applied, Mathematics & Theoretical, Physics, Cambridge, Engl, Univ of Cambridge, Dep of Applied Mathematics & Theoretical Physics, Cambridge, Engl
关键词
COMPUTER PROGRAMMING - Algorithms - MATHEMATICAL PROGRAMMING;
D O I
10.1007/BF02591949
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It is proved that the second-order correction trust region algorithm of R. Fletcher ensures superlinear convergence if some mild conditions are satisfied.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 16 条
[1]  
[Anonymous], [No title captured]
[2]   MINIMIZATION TECHNIQUES FOR PIECEWISE DIFFERENTIABLE FUNCTIONS - L1 SOLUTION TO AN OVERDETERMINED LINEAR-SYSTEM [J].
BARTELS, RH ;
CONN, AR ;
SINCLAIR, JW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :224-241
[3]  
FLETCHER R, 1982, MATH PROGRAM STUD, V17, P67
[4]  
FLETCHER R, 1970, AERE6370 REP
[5]  
Fletcher R., 1982, NUMERICAL ANAL, P85
[6]  
Fletcher R., 1981, PRACTICAL METHODS OP
[7]  
Gill P. E., 1974, NUMERICAL METHODS CO
[8]   NUMERICALLY STABLE METHODS FOR QUADRATIC PROGRAMMING [J].
GILL, PE ;
MURRAY, W .
MATHEMATICAL PROGRAMMING, 1978, 14 (03) :349-372
[9]  
GILL PE, 1982, NONLINEAR OPTIMIZATI
[10]   A NUMERICALLY STABLE DUAL METHOD FOR SOLVING STRICTLY CONVEX QUADRATIC PROGRAMS [J].
GOLDFARB, D ;
IDNANI, A .
MATHEMATICAL PROGRAMMING, 1983, 27 (01) :1-33