A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR AND TETRAHEDRAL QUADRATIC ELEMENTS USING INTERIOR RESIDUALS

被引:23
作者
BAEHMANN, PL
SHEPHARD, MS
FLAHERTY, JE
机构
[1] Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, New York
关键词
D O I
10.1002/nme.1620340320
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A reliable and accurate a posteriori error estimator for quadratic triangular and tetrahedral elements is presented. Its application in an automated, adaptive finite element modelling system for elasticity problems demonstrates its ability to accurately estimate the error in the energy norm. A local version of this error estimator is also used to determine the multiple level h-refinement necessary to improve the finite element mesh.
引用
收藏
页码:979 / 996
页数:18
相关论文
共 13 条
[1]  
ADJERID S, 1990, A POSTERIORI ERROR E
[2]  
Babuska I., 1983, ADAPTIVE COMPUTATION, P57
[3]  
BABUSKA I, 1986, COMMUNICATION
[4]  
BABUSKA I, 1986, BN1050 U MAR DEP COM
[5]  
BABUSKA I, 1986, ACCURACY ESTIMATES A
[6]   ROBUST, GEOMETRICALLY BASED, AUTOMATIC TWO-DIMENSIONAL MESH GENERATION [J].
BAEHMANN, PL ;
WITTCHEN, SL ;
SHEPHARD, MS ;
GRICE, KR ;
YERRY, MA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (06) :1043-1078
[7]   ADAPTIVE MULTIPLE-LEVEL H-REFINEMENT IN AUTOMATED FINITE-ELEMENT ANALYSES [J].
BAEHMANN, PL ;
SHEPHARD, MS .
ENGINEERING WITH COMPUTERS, 1989, 5 (3-4) :235-247
[8]  
BAEHMANN PL, 1989, THESIS RENSSELAER PO
[9]  
CHAE SW, 1988, THESIS MIT CAMBRIDGE
[10]  
FLAHERTY JE, 1989, ADAPTIVE METHODS PAR